
Mathematics in ConT_EXt

Mathematics in ConT_EXt

Text: Hans Hagen & Mikael P. Sundqvist Illustrations: Sofia Kockum Version: August 19, 2024

Introduction

This document

We discuss how to typeset mathematics with the ConT_EXt (lmtx) typesetting system. Our main purpose is to provide general advice and assistance to ConT_EXt users seeking to create beautiful, structured, and consistent documents with mathematical content (with these three criteria being interdependent). Although the focus will be on ConT_EXt, we will also sometimes explore mathematical typesetting in a broader sense that applies to other systems.

The document contains material suitable both for beginners and for experts; our aim is that it shall cover all aspects of mathematical typesetting with ConT_EXt. The beginner will hopefully not be overwhelmed by all the possible setups and tweaks that we show and discuss. We hope and believe that the default settings work well for most users. At the same time, we dare to claim that ConT_EXt is the most advanced and capable system for typesetting mathematics today, in particular when it comes to Opentype mathematics. This does not mean that it is difficult to typeset mathematics in ConT_EXt.

In Autumn 2021 we began to discuss mathematical typesetting in ConT_EXt, starting on the ConT_EXt mailing list. Given that ConT_EXt is a modern system built upon Donald Knuth's classical typesetting system T_EX, its mathematical typesetting capabilities were by that time already quite good. Mikael had previously used ConT_EXt (mkii) to typeset his doctoral thesis in mathematics in 2008 and had coauthored a math book (first edition published in 2019) using ConT_EXt (mkiv).

INTRODUCTION
GETTING STARTED
BUILDING BLOCKS
KEYWORDS
INLINE MATH
DISPLAYED MATH
EQUATION LABELS
ENUNCIATIONS
ILLUSTRATIONS
MATH FONTS
MEANINGFUL MATH
MISCELLANEOUS
UNICODE SYMBOLS
SETUPS
BIBLIOGRAPHY

However, the situation was not optimal. $ConT_EXt$ was by default running on the LuaT_EX engine, although the newer luametaT_EX engine was also becoming available and mature. Additionally, several Opentype Unicode math fonts had been created. One problem was that the Opentype standard (or lack thereof) meant that formulas could appear quite different depending on the font and engine being used. To illustrate this, we consider the formula

$$\int_{a}^{b} f'(x) \, dx = [f(x)]_{a}^{b}$$

This formula was typeset with TEXGyre Bonum Math without any adjustments. Note that the bracket and the *f* are overlapping, the lower limit of the integral is not positioned correctly (we do not even try to place them correctly, but only raise and lower them according to the font parameters), and the integral sign appears too small (in traditional math fonts there were two sizes of the integral sign, in Opentype math fonts, there can be many, and therefore we just select the base glyph here). Although these weren't the exact issues we encountered (it's difficult to recall after all the changes, but it probably had to do with integrals or primes), the main problem was that adjusting one parameter to improve the appearance of one font often led to issues with another. It took us some time to address these discrepancies and inaccuracies, but we ultimately resolved them, sometimes by extending the luametaTEX engine, sometimes by working at the Lua and TEX end, combined with font-specific setups in "goodie files". If we load the one for TEXGyre Bonum Math, the previous formula is set as

$$\int_{a}^{b} f'(x) \, dx = [f(x)]_{a}^{b}$$

INTRODUCTION **GETTING STARTED BUILDING BLOCKS KEYWORDS INLINE MATH DISPLAYED MATH EQUATION LABELS ENUNCIATIONS ILLUSTRATIONS** MATH FONTS **MEANINGFUL MATH** MISCELLANEOUS UNICODE SYMBOLS SETUPS **BIBLIOGRAPHY**

Much better, indeed. The font issues were not the only problem, though. At that point, the math community had not widely adopted ConTEXt, and while there were many excellent examples of usage available, they were often somewhat concealed within the source (one exception was Aditya Mahajan's excellent manual [Mah99] on math alignments). This document shall fill in those gaps, and we hope that it will be useful as a rather complete math guide for all ConTEXt users.

When it comes to the advice on how to set mathematics, we claim no or little originality. Our main inspiration has been the old book [Lan61]. It was written as a typesetting guide for the Swedish publisher *Almqvist & Wiksell*, mainly for their mathematical publications, and particularly for the renowned journal *Acta Mathematica*. What sets this book apart is its explanation of the *why* behind the rules for consistent typesetting, rather than just the *how*. Some of the rules in that book are however outdated; one reason is that we now work digitally rather than with Monotype machines. You can find a lot in the literature about the typesetting of math, in particular in TEX. We mention [CBB54; DH21; Hag16; Hag18; LS17; Mad11; Swa99], but the reader should also look in TUGBoat, MAPS and other places.

Writing and typesetting mathematics

Written mathematics can be very dense and it often contains symbols from different alphabets, set in different styles. Some symbols are raised or lowered. As a result, reading a mathematical text is challenging and time-consuming, and it is therefore important for the writer to make the suffer of the reader as small as possible. If we jump into the middle of a novel, we might be confused, but if we do it with a mathematical text, it might be completely incomprehensible, in particular if we are not acquainted with the notation.

INTRODUCTION **GETTING STARTED BUILDING BLOCKS KEYWORDS INLINE MATH DISPLAYED MATH EQUATION LABELS ENUNCIATIONS ILLUSTRATIONS** MATH FONTS **MEANINGFUL MATH** MISCELLANEOUS UNICODE SYMBOLS SETUPS **BIBLIOGRAPHY**

Consider the following paragraph, borrowed from Andrew Wiles' famous article where he among other things proves Fermat's last theorem [Wil95].

Assume for the moment that $F_{\mathfrak{P}}$ is \mathbf{Q}_p . In this case $\hat{E}_{\mathfrak{P}}$ is isomorphic to the Lubin– Tate group associated to $\pi x + x^p$ where $\pi = \varphi(\mathfrak{p})$. Then letting ω_n be nontrivial roots of $[\pi^n](x) = 0$ chosen so that $[\pi](\omega_n) = \omega_{n-1}$, it was shown in [CW] that to each element $u = \varprojlim u_n \in U_{\infty,\mathfrak{P}}$ there corresponded a unique power series $f_u(T) \in \mathbf{Z}_p[[T]]^{\times}$ such that $f_u(\omega_n) = u_n$ for $n \ge 1$. The definition of $\delta_{k,\mathfrak{P}}$ $(k \ge 1)$ in this case was then

$$\delta_{k,\mathfrak{P}}(u) = \left(\frac{1}{\lambda'(T)}\frac{d}{dT}\right)^k \log f_u(T) \bigg|_{T=0}$$

It is easy to see that $\delta_{k,\mathfrak{P}}$ gives a homomorphism: $U_{\infty} \to U_{\infty,\mathfrak{P}} \to O_{\mathfrak{p}}$ satisfying $\delta_{k,\mathfrak{P}}(\varepsilon^{\sigma}) = \theta(\sigma)^k \delta_{k,\mathfrak{P}}(\varepsilon)$ where θ : Gal(\overline{F}/F) $\to O_{\mathfrak{p}}^{\times}$ is the character giving the action on $E[\mathfrak{p}^{\infty}]$.

The paragraph by Wiles above is not at all poorly written; it just happens to contain many formulas, use a rich set of symbols from various alphabets, and it is aimed at experts in the field. Taken out of its context, it is also difficult to read since we do not know the meaning of the different symbols (the authors of this document do not claim to understand the very advanced mathematics in Wiles' famous paper at all). Even if this document is about typesetting mathematics, perhaps the best advice we can give the writer is to use less math, or at least to think twice before introducing new notation, and not to complicate notation without a good reason.

When typesetting mathematics it is also very important that the spacing around symbols comes out right. Luckily this is something that T_EX usually handles perfectly well. Take

BUILDING BLOCKS KEYWORDS INLINE MATH DISPLAYED MATH EQUATION LABELS ENUNCIATIONS ILLUSTRATIONS MATH FONTS **MEANINGFUL MATH** MISCELLANEOUS UNICODE SYMBOLS SETUPS **BIBLIOGRAPHY**

a look at the following formula:

$$\oplus_{\alpha=1}^{\ell}\mathfrak{q}_{\alpha},\mathfrak{p}_{s}) \in C^{*}_{\max}(\Gamma,G)^{+} \cong [C_{0}(\mathbb{R}^{7}) \otimes C_{t_{s}}]^{+}.$$

Thanks to the spacing and parentheses we readily recognize two verbs, \in and \cong ; the formula has the main structure

Thus, it says that the object $(\bigoplus_{\alpha=1}^{\ell} \mathfrak{q}_{\alpha}, \mathfrak{p}_{s})$ (whatever that is) belongs to $C_{\max}^{*}(\Gamma, G)^{+}$, which in turn is isomorphic (small questionmark here since we do not know how the symbol \cong is used) to $[C_{0}(\mathbb{R}^{7}) \otimes C_{t_{*}}]^{+}$. One reason that our eyes fell on those two symbols is that the spacing around them is slightly bigger than around the other symbols. If we take a new look at the same formula, but with these spaces removed,

$$(\oplus_{\alpha=1}^{\ell}\mathfrak{q}_{\alpha},\mathfrak{p}_{s})\in C_{\max}^{*}(\Gamma,G)^{+}\cong [C_{0}(\mathbb{R}^{7})\otimes C_{l_{*}}]^{+},$$

it is clearly much more difficult to get the structure of the formula. These spaces in formulas are indeed very important. T_EX has classically divided the different symbols in a few atom classes, with spaces between them configured in a way that looks good. One of the new things in the luametaT_EX engine is the possibility to define new classes and to set up the spacing between classes in a more flexible way. Even if there is a lot going on "behind the scene" this will likely go unnoticed to most users, since the default setup is hopefully well working. There will be a minimal amount of manual tweaking with spaces needed (if you find yourself doing lots of manual tweaks, you should suspect that there is a better way of doing what you are doing). At the same time, users have the opportunity to make very different setups, if needed.

Even though this document is about typesetting mathematics and there will be lots of formulas, and suggestions how to typeset them, we would like to stress a bit on the

GETTING STARTED BUILDING BLOCKS KEYWORDS INLINE MATH DISPLAYED MATH EQUATION LABELS ENUNCIATIONS ILLUSTRATIONS MATH FONTS **MEANINGFUL MATH** MISCELLANEOUS UNICODE SYMBOLS SETUPS

INTRODUCTION

importance of the writing. Use complete sentences. Do not use unnecessarily complex notation, and not more notation than you really need. Do not overuse (displayed) formulas; it is often possible, and helps the reader, if you write a few extra words instead. The following quote from [Knu99] is good to have in mind:

Many readers will skim over formulas on their first reading of your exposition. Therefore, your sentences should flow smoothly when all but the simplest formulas are replaced by "blah" or some other grunting noise.

A few notes about this document

This document is rather complex, with lots of code snippets and formulas. Almost all examples are done by adding the example code inside \startbuffer and \stopbuffer, and then showing the code with \typebuffer and the result with \getbuffer. Sometimes we have needed to add grouping and some local setup around the examples.

We have kept manual page break optimization at a minimum. This is for several reasons. One of them is that we consider this as a living, unfinished, document. Another is that we generate a screen and a print version from the same source (you are now reading the screen version). Still, we use some of the available mechanisms to obtain as good breaks as possible, such as club and widow penalties, also for code blocks. We flush the pages to the bottom of the text block, but limit the stretch in order to prohibit the stretch from becoming too large on problematic pages. We use a penalty of 5000 before displayed formulas since we prefer that they do not end up at the top of pages.

When it comes to the breaking of paragraphs, we use multiple (four) paragraph passes, where we enable and gradually increase the possible amount of expansion. This is mainly

o
GETTING STARTED
BUILDING BLOCKS
KEYWORDS
INLINE MATH
DISPLAYED MATH
EQUATION LABELS
ENUNCIATIONS
ILLUSTRATIONS
MATH FONTS
MEANINGFUL MATH
MISCELLANEOUS
UNICODE SYMBOLS
SETUPS
BIBLIOGRAPHY

in order to avoid overful lines. We did not optimize line breaks manually. What you see here is essentially what we can do automatically.

Acknowledgements

We would like to thank all the ConTEXt users who have shared helpful suggestions and thoughts. We in particular thank Wolfgang Schuster for carefully updating the setup files and noticing inconsistencies. We are also thankful to Ton Otten for his careful five times reading and his valuable comments. He also pushed a print version for the Con-TEXt meeting in 2024.

Mikael would also like to thank the nice T_EXies at the T_EX Stack Exchange chat, as well as his colleagues, for valuable input and discussions.

Errors, misprints and questions

We hope that this document will serve the ConT_EXt community well. It surely contains some errors and misprints, and even if we have tried to cover everything in ConT_EXt that could be useful for people writing mathematics, we likely have missed a few things. Please write to us (mickep@gmail.com and j.hagen@xs4all.nl) if you find something that is wrong or that can be explained better, or if you miss something. Questions and discussions that could interest more people can better go to the ConT_EXt mailing list.

INTRODUCTION
GETTING STARTED
BUILDING BLOCKS
KEYWORDS
INLINE MATH
DISPLAYED MATH
EQUATION LABELS
ENUNCIATIONS
ILLUSTRATIONS
MATH FONTS
MEANINGFUL MATH
MISCELLANEOUS
UNICODE SYMBOLS
SETUPS
BIBLIOGRAPHY

1 Getting started

1.1 Two types of formulas

Formulas can either be typeset *inline* as $a^2 + b^2 = c^2$ or *displayed*, as

 $a^2 + b^2 = c^2.$

Traditionally in T_EX single dollars have been used to step into inline math mode, while double dollars enter displayed formulas. In $ConT_EXt$ it is still possible to use single dollars to enter inline math mode, but we suggest instead to use the dedicated macros. One advantage of that is the possibility to add optional settings. The inline formulas can, partly for historical reasons, be entered in several different ways. We can

- Use the macro \im, as in \im{a^2 + b^2 = c^2}. This macro is a bit primitive, like the dollars, and no optional arguments are allowed. It is also accompanied with the \dm macro, that is a quick way to enter inline math, but in display style.
- Use the macro \mbox{m} , as in $\mbox{m}\{a^2 + b^2 = c^2\}$. This macro can be configured and a few optional arguments are allowed. For example, with $\mbox{m}[color=C:3]\{a^2 + b^2 = c^2\}$ we get a colored formula $a^2 + b^2 = c^2$. In fact, \mbox{m} is only a short cut for the slightly longer \mbox{m} and \mbox{m} thematics. Historically there were differences between these, but now they are the same.
- (Not recommended) Use the traditional way and enclose the formula in a pair of dollar signs, as in \$a^2 + b^2 = c^2\$.

INTRODUCTION
GETTING STARTED
BUILDING BLOCKS
KEYWORDS
INLINE MATH
DISPLAYED MATH
EQUATION LABELS
ENUNCIATIONS
ILLUSTRATIONS
MATH FONTS
MEANINGFUL MATH
MISCELLANEOUS
UNICODE SYMBOLS
SETUPS
BIBLIOGRAPHY

Inline formulas are generally brief and should not take up too much vertical space in order to prevent excessive interline spacing; they are not labeled. We will discuss inline formulas to a larger extent in Chapter 4. In particular we will discuss line breaking and how to avoid line spreading due to "tall" formulas.

Displayed formulas are typeset separately from the surrounding text. Typically, they contain more complex formulas or those that are intended to be emphasized. If necessary, they may be labeled in the margin, as in the following example:

$$C_{\alpha}(x) = \left\{ \prod_{i=1}^{k} T_{\alpha_{i}}^{n_{i}} x \mid \alpha_{i} = \alpha, \ k = 1, 2, \dots; \ n_{i} = 0, \pm 1, \pm 2, \dots \right\}.$$
(1.1)

The pairs \startformula and \stopformula give displayed formulas. The double dollars are not supported. The displayed formulas are by default centered horizontally, but it is possible to set them up, in particular to configure both the horizontal and vertical placement, and alignment.

We will discuss displayed math in detail in Chapter 5 and Section 3.6, and the numbering of equations in Chapter 6. Let us sum up with a small example snippet that contains both inline and displayed formulas.

The Pythagorean theorem: In a right triangle with legs $m{a}$ and $m{b}$ and hypotenuse $m{c}$,

```
\startformula
    a^2 + b^2 = c^2.
\stopformula
```

There are many proofs of this equality.

This is the way we will show code snippets in this document. Usually we will then show the result of the code directly below. Here comes the result:

The Pythagorean theorem: In a right triangle with legs *a* and *b* and hypotenuse *c*,

 $a^2 + b^2 = c^2.$

There are many proofs of this equality.

1.2 Some simple examples

Now we know how to enter math mode. To better understand how to input mathematical content, before going into more detail, we look next at some simple examples, gathered from various sources. Below each example, we give a few comments. More detailed information will be provided later, in particular in Chapter 2 when it comes to different constructions. In Chapter 12 we list the many Unicode symbols available, including the macros pointing to them.

```
\startformula
```

\sin x = x \prod_{n=1}^{+\infty}
 \left(1 - \frac{x^2}{n^2\pi^2} \right)

\stopformula

$$\sin x = x \prod_{n=1}^{+\infty} \left(1 - \frac{x^2}{n^2 \pi^2} \right)$$

The fraction is set with \frac. The command takes two arguments, the first for the numerator and the second for the denominator. The \left and \right commands in

13

INTRODUCTION

GETTING STARTED

BUILDING BLOCKS

KEYWORDS

INLINE MATH

DISPLAYED MATH

EQUATION LABELS

ENUNCIATIONS

ILLUSTRATIONS

MATH FONTS

MEANINGFUL MATH

MISCELLANEOUS

UNICODE SYMBOLS

SETUPS

front of the parentheses are used to automatically size them to fit the expression inside, ensuring that they are large enough to be easily readable.

\startformula

 $f(\sigma_{ij}, \mbox{mathbf}_F) = F_{ij} \sigma_i \sigma_j = \ar{\sigma}^2 \stopformula$

$$f(\sigma_{ij}, \mathbf{F}) = F_{ij}\sigma_i\sigma_j = \bar{\sigma}^2$$

To obtain bold letters, we use the <code>\mathbf</code> command, such as in the example **F**. Greek letters can be typeset using specific macros corresponding to their names. However, it is also possible to directly use the Unicode representation of a Greek letter, as shown with the last character, σ . The <code>\bar</code> command can be used to place a small macron accent (a bar) over its argument. If a wider bar accent is needed, the <code>\widebar</code> command can be used instead. But do read the section on accents before using that bar for complex conjugates.

```
\startformula
```

```
\fenced[bar]{\mu(B) - \nu(B)}
```

\leq

 $\label{eq:c_fenced[bar][size=big]{\inf_E U^{\mu}}^{\frac{1}{2}} \stopformula$

$$|\mu(B) - \nu(B)| \le C |\inf_E U^{\mu}|^{\frac{1}{2}}$$

Note that the command inf produces "inf" in roman letters, with some space added before the *U*. The subscript is positioned below the word "inf". We discuss more constructions like this in Section 2.4, where we will also see how to define our own.

INTRODUCTION **GETTING STARTED** BUILDING BLOCKS **KEYWORDS INLINE MATH DISPLAYED MATH EQUATION LABELS ENUNCIATIONS ILLUSTRATIONS** MATH FONTS **MEANINGFUL MATH** MISCELLANEOUS UNICODE SYMBOLS SETUPS **BIBLIOGRAPHY**

Absolute values are typeset using the \fenced command with the option bar. Alternatively, we can use the construction with \left and \right. We discuss delimiters in more detail, including how to define our own, in Section 2.5.

\startformula

 $T_m(f,g)(x) = \inf_{\reals^4} m(xi, \eta) \hat{f}(xi) \hat{g}(\eta) e^{2\rho i \ i \ x(xi + \eta)} \d \xi \d \eta$

\stopformula

$$T_m(f,g)(x) = \int_{\mathbb{R}^4} m(\xi,\eta) \,\hat{f}(\xi) \,\hat{g}(\eta) \, e^{2\pi i x (\xi+\eta)} \, d\xi \, d\eta$$

The \hat places a hat accent on top of its argument. However, it is designed to work best with single characters. For instance, using \hat {fg} to typeset \hat{fg} is not recommended. In such cases, it is better to use the \widehat command, as in \hat{fg} , or construct an appropriate accent with a construction like fourier, such as $(fg)^{\widehat{}}$. More information on accents can be found in Section 2.9.

In the example, note the use of \d to typeset the differential symbol with suitable spacing around the *d*. As we will see later, we can set it up to be upright instead of italic. Also, \reals is used to indicate the set of real numbers. To obtain other blackboard bold characters, use \mbox{mathbb} .

\startformula

 $pi_1\old U(\max\{osp\}(2p|2q))\t A_{p|q}^{+} \stopformula$

 $\pi_1: U(\mathfrak{osp}(2p|2q)) \to A^+_{p|q}$

The letters \mathfrak{osp} are written in fraktur style, achieved with the command $\mathfrak{mathfrak} \{ osp \}$. Additionally, note the difference between using colon and a regular colon in formulas. For example, using $pi_1colon U$ yields the output $\pi_1: U$, while using $pi_1:U$ yields the output $\pi_1: U$.

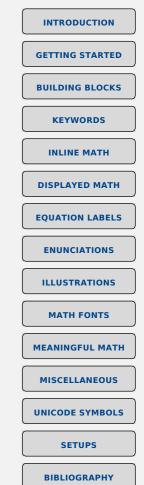
```
\startformula
```

 $\label{eq:slim} $$ \sum_{i = 1}^r g_i(s_1) g_i(s_2) \ dots g_i(s_k) \ 2^{-(k + 1)} \ beta \ stopformula$

$$\mathbb{E}_{s \in S} \sum_{i=1}^{r} g_i(s_1) g_i(s_2) \dots g_i(s_k) \ge 2^{-(k+1)} \beta$$

The \ldots command indicates that some terms are omitted in the product. Nowadays, it is common to use \cdots instead of \ldots, as in $g_i(s_1)g_i(s_2) \cdots g_i(s_k)$.

```
\startformula
```


```
\frac{\partial f}{\partial t} + v \scalarproduct \gradient_x f
= Q(f,f)
```

\stopformula

$$\frac{\partial f}{\partial t} + v \cdot \nabla_x f = Q(f, f$$

We can use partial to obtain the stylized ∂ symbol for partial derivatives and gradient to obtain the gradient symbol ∇ . The centered dot, created by scalarproduct, is frequently used to indicate a scalar product. It can also be typeset with cdot.

\definemathfunction[Aut]


```
\startformula
  \integers_2
  \cong
  \Aut(\complexes) \subseteq \Aut(t_2)
  \cong
  \fenced
   [brace]
   [middle=`|]
   {(g_1,g_2,g_3) \in U(1)^3 \fence g_1g_2g_3=1}
  \times \integers_2
  \stopformula
```

 $\mathbb{Z}_2 \cong \operatorname{Aut}(\mathbb{C}) \subseteq \operatorname{Aut}(t_2) \cong \left\{ (g_1, g_2, g_3) \in U(1)^3 \, \middle| \, g_1 g_2 g_3 = 1 \right\} \times \mathbb{Z}_2$

The \Aut macro is not predefined in ConT_EXt, but we defined it just before the formula using \definemathfunction. More about this can be found in Section 2.4. The \fenced construction is used to adjust the size of the braces (indicated by the [brace] option) to the content in between. In this example, the superscript 3 makes them too big, so we have to specify the size. Additionally, we use middle=`| to enable the use of \fence inside the fenced construction to get a vertical bar symbol (|) from the Unicode character set (the back tic needs to be there, to provide middle by the number of the glyph). More information on fences can be found in Section 2.5.

\startformula

```
\frac{e^{-\lambda^2t}}{\sqrt{4\pi t}}
\left\{ \exp\left[ -\frac{(u-v)^2}{4t} \right]
        -\exp\left[ -\frac{(u+v)^2}{4t} \right] \right\}
```

INTRODUCTION **GETTING STARTED BUILDING BLOCKS KEYWORDS INLINE MATH DISPLAYED MATH EQUATION LABELS ENUNCIATIONS ILLUSTRATIONS** MATH FONTS **MEANINGFUL MATH** MISCELLANEOUS UNICODE SYMBOLS SETUPS **BIBLIOGRAPHY**

\stopformula

$$\frac{e^{-\lambda^2 t}}{\sqrt{4\pi t}} \left\{ \exp\left[-\frac{(u-v)^2}{4t}\right] - \exp\left[-\frac{(u+v)^2}{4t}\right] \right\}$$

Here we have used nested delimiters, and we have used \left and \right instead of \fenced. Additionally, it is a good practice to use $\exp(x)$ instead of e^x when the argument x itself is large. Compare $e^{-\frac{(u-v)^2}{4t}}$ with what we have above. If we replace the fraction bar by a slash, $e^{-(u-v)^2/4t}$, we get something more acceptable. This is in particular true for inline formulas, as in this paragraph, where the \frac in the superscript forces some ugly line spread. We come back to that in Chapter 4.

```
\startformula
```

```
0
\longrightarrow
E^0 \boxtimes F^0
\mrightarrow{\phi}
E^1 \boxtimes F^0 \oplus E^0 \boxtimes F^1
\stackrel{\psi}{\longrightarrow}
E^1 \boxtimes F^1
\longrightarrow
0
```

\stopformula

$$0 \longrightarrow E^0 \boxtimes F^0 \xrightarrow{\phi} E^1 \boxtimes F^0 \oplus E^0 \boxtimes F^1 \xrightarrow{\psi} E^1 \boxtimes F^1 \longrightarrow 0$$

We used \mrightarrow to put the ϕ on top of the arrow and \stackrel to place the ψ (see Section 2.10). In Chapter 8 we will see some more examples of diagrams.

```
\startformula
\mathfrak{D}_{\mathcal{A}}
\colonequals
\fenced
  [brace]
  [middle=`:]
  {d \in \naturalnumbers \fence \exists(b,d) = 1
    \mtext{ with } \frac{b}{d} \in \mathfrak{R}_{\mathcal{A}}}
\stopformula
```

$$\mathfrak{D}_{\mathcal{A}} := \left\{ d \in \mathbb{N} : \exists (b, d) = 1 \text{ with } \frac{b}{d} \in \mathfrak{R}_{\mathcal{A}} \right\}$$

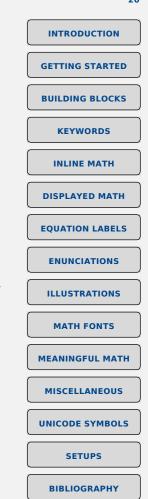
Note that \mathcal is meant to give a calligraphic A (A), while \mathcal script A (A). In TEXGyre Pagella Math, as with many other fonts, there is no calligraphic alphabet, and in such cases the same alphabet is used in both cases. The symbol \colonequals is often used to denote a defining equality.

```
\startformula
f(z)
=
 \frac{1}{2\pi i}
 \aointc_{\partial \Omega}
    \frac{f(\zeta)}{\zeta - z} \dd \zeta
- \frac{1}{\pi}
```

GETTING STARTED
BUILDING BLOCKS
KEYWORDS
INLINE MATH
DISPLAYED MATH
EQUATION LABELS
ENUNCIATIONS
ILLUSTRATIONS
MATH FONTS
MEANINGFUL MATH
MISCELLANEOUS
UNICODE SYMBOLS
SETUPS
BIBLIOGRAPHY

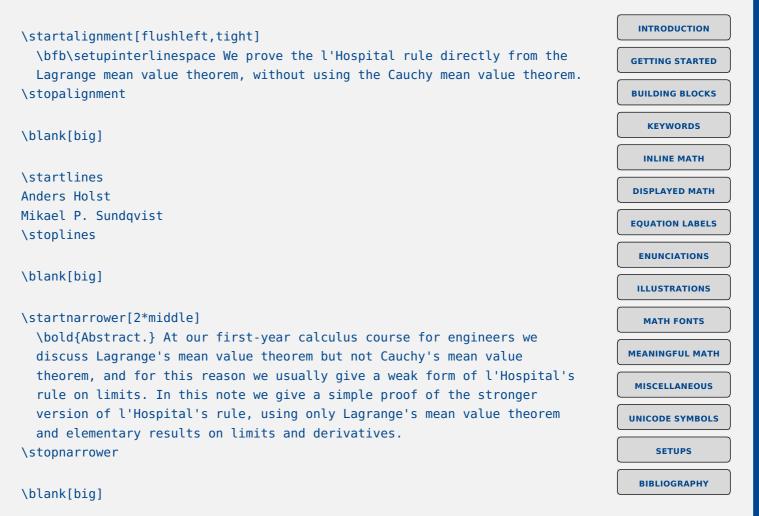
```
\iint_{\Omega}
  \frac{\partial f}{\partial \conjugate{\zeta}}(\zeta)
  \frac{1}{\zeta - z} \dd \lambda(\zeta)
  \stopformula
```

$$f(z) = \frac{1}{2\pi i} \oint_{\partial\Omega} \frac{f(\zeta)}{\zeta - z} d\zeta - \frac{1}{\pi} \iint_{\Omega} \frac{\partial f}{\partial \bar{\zeta}}(\zeta) \frac{1}{\zeta - z} d\lambda(\zeta)$$


There are several different types of integrals to choose from, see Section 2.11. Note also the \conjugate{\zeta}, giving the conjugate bar over the zeta, $\overline{\zeta}$.

1.3 A small note, with source

The aim of this document is to describe how to typeset mathematics with $ConT_EXt$, not how to use $ConT_EXt$ for general typesetting. Below, however, we show a complete example (the \starttext and \stoptext are commented out, since we use it in this document). We first show the source, and then the typeset example. The enumerations defined for the theorem, lemma and proofs are described in detail in Chapter 7.


% language=en

```
\defineenumeration
[Theorem]
[alternative=serried,
width=fit,
distance=\emwidth,
text=Theorem,
style=italic,
```


<pre>prefix=yes, headcommand={.}] BuildIn Keyn \defineenumeration [Lemma] [Theorem] [text=Lemma] DISPLA [text=Lemma] Equation [Proof] [alternative=serried, width=fit, distance=\emwidth, text=Proof, number=no, headstyle=italic,</pre>	DUCTION
headcommand={.}] Buildin beadcommand={.}] Buildin Kerv \defineenumeration [text=Lemma] Buildin beadcommand={.}] Buildin beadcommandedcommand{}{.}] Buildin beadcommandedcom	G STARTED
\defineenumeration KEYN [Lemma] INLIN [Theorem] DISPLAY [text=Lemma] EQUATE \defineenumeration EQUATE [Proof] ENUMY [alternative=serried, ILLUST width=fit, ILLUST distance=\emwidth, MATH text=Proof, MEANING headstyle=italic, MEANING	
\defineenumeration [Lemma] [Theorem] [text=Lemma] DISPLA (defineenumeration [Proof] [alternative=serried, width=fit, distance=\emwidth, text=Proof, number=no, headstyle=italic,	IG BLOCKS
[Lemma] INLIN [Theorem] DISPLA [text=Lemma] EQUATE (defineenumeration EQUATE [Proof] ENUNC [alternative=serried, ILLUST width=fit, ILLUST distance=\emwidth, MATH text=Proof, MATH number=no, MEANING headstyle=italic, MESCEN	WORDS
<pre>[Theorem] [text=Lemma] DISPLA EQUATIN Lequation [Proof] [alternative=serried, width=fit, distance=\emwidth, text=Proof, number=no, headstyle=italic,</pre>	
<pre>[text=Lemma] [text=Lemma] [equation [Proof] [alternative=serried, width=fit, distance=\emwidth, text=Proof, number=no, headstyle=italic,</pre>	E MATH
<pre>[text=Lemma] Equation [Proof] [alternative=serried, width=fit, distance=\emwidth, text=Proof, number=no, headstyle=italic,</pre>	
<pre>\defineenumeration [Proof] [alternative=serried, width=fit, distance=\emwidth, text=Proof, number=no, headstyle=italic,</pre>	TED MATH
<pre>[Proof] [alternative=serried, width=fit, distance=\emwidth, text=Proof, number=no, headstyle=italic,</pre>	ON LABELS
[alternative=serried, width=fit, distance=\emwidth, text=Proof, number=no, headstyle=italic,	
width=fit, distance=\emwidth, text=Proof, number=no, headstyle=italic,	CIATIONS
width=fit, distance=\emwidth, text=Proof, number=no, headstyle=italic,	
text=Proof, number=no, headstyle=italic,	RATIONS
number=no, headstyle=italic,	FONTS
headstyle=italic,	
MISCEL	GFUL MATH
headcommand={.},	
	LANEOUS
title=yes,	E SYMBOLS
titlestyle=normal,	
closesymbol=\mathqed] se	TUPS

% \starttext

We formulate and prove the l'Hospitals rule for one-sided limits. This in fact strengthen the usual formulation slightly.

\startTheorem
[title={l'Hospital's rule},
reference={thm:lHospital}]
Assume that the functions \m {f} and \m {g} are continuous in \m
{\rightopeninterval {a,b}} and differentiable in \m {\openinterval
{a,b}}. Assume further that \m {f(a) = g(a) = 0} and that \m {g'(x) \neq
0} in \m {\openinterval {a,b}}. If \m {f'(x)/g'(x)\tendsto A} as \m {x
\tendsto a^^{+}}, then \m {f(x)/g(x) \tendsto A} as \m {x \tendsto
a^^{+}}.

\stopTheorem

A geometric interpretation of the l'Hospital rule goes as follow. In the \m {uv}-plane, draw the curve parametrized by \m {u = g(x)} and \m {v = f(x)}. Then the direction coefficient \m {f(x)/g(x)} of the secant (dotted in \in{Figure}[fig:lHospital]) connecting \m {(g(x),f(x))} with \m {(g(a),f(a)) = (0,0)} should approach the same value as the direction coefficient \m {f'(x)/g'(x)} of the tangent to the curve at \m {(g(x),f(x))} (dashed in \in {Figure}[fig:lHospital]) as \m {x} approaches \m {a}. Our proof of the theorem uses that we can parametrize this curve locally around the origin as a function graph \m {u = t} and \m {v = f(\inverse{g}\of(t))}.

INTRODUCTION

MEANINGFUL MATH

MISCELLANEOUS

UNICODE SYMBOLS

SETUPS

```
INTRODUCTION
\startplacefloat
  [figure]
                                                                                        GETTING STARTED
  [reference=fig:lHospital]
  \enabledirectives[metapost.text.fasttrack]
                                                                                        BUILDING BLOCKS
  \startMPcode[offset=1TS]
                                                                                          KEYWORDS
  numeric u ; u:=7.5ts ;
  path p,tangent,sekant ;
                                                                                         INLINE MATH
  p:=(0,0){dir 10}..(1.5,1){dir 50}..(3,2);
                                                                                        DISPLAYED MATH
  z0 = point 1 of p;
                                                                                        EOUATION LABELS
  tangent:=(((-1,0)--(1,0)) rotated 50) shifted z0 ;
  sekant:=origin--z0 ;
                                                                                         ENUNCIATIONS
  drawarrow ((-0.25,0)--(3,0)) scaled u ;
                                                                                        ILLUSTRATIONS
  drawarrow ((0,-0.25)--(0,2)) scaled u ;
                                                                                         MATH FONTS
  pickup pencircle scaled 1 ;
                                                                                       MEANINGFUL MATH
  draw p scaled u ;
  draw tangent scaled u dashed evenly ;
                                                                                        MISCELLANEOUS
  draw sekant scaled u dashed withdots ;
                                                                                       UNICODE SYMBOLS
  dotlabel.ulft("\m{(q(x), f(x))}", z0 scaled u) ;
                                                                                           SETUPS
  dotlabel.lrt ("\m{(g(a),f(a))}", origin) ;
  label.bot("\m{u}", (2.9u,0)) ;
                                                                                         BIBLIOGRAPHY
  label.lft("\m{v}", (0,1.9u)) ;
```

\stopMPcode
\disabledirectives[metapost.text.fasttrack]
\stopplacefloat

The only place in our proof where Lagrange's mean value theorem occurs is in this useful property of right-hand side derivatives.

```
\startLemma
[reference=lemma:rightderivative]
Let \m {c > 0}. Assume that \m {\phi \maps \rightopeninterval {0,c} \to
\reals} is continuous in \m {\rightopeninterval {0,c}} and differentiable
in \m {\openinterval {0,c}}, and that \m {\lim_{t \tendsto 0^^{+}}}
\phi'(t)} exists and equals \m {A}. Then
```

```
\startformula
```

 $\lim_{h \to 0^{+}} \frac{1}{\theta + h} - \frac{1}{\theta} = A.$

\stopformula

\stopLemma

```
\startProof
For \m {h \in \openinterval {0,c}} the differential quotient \m {(\phi(0
+ h) - \phi(0))/h} equals \m {\phi'(\xi_h)} for some \m {\xi_h \in
\openinterval {0,h}}, by Lagrange's mean value theorem. As \m {h\tendsto
0^{{+}} we have \m {\xi_h \tendsto 0^{{+}}}, and so
```

INTRODUCTION

GETTING STARTED

BUILDING BLOCKS

KEYWORDS

INLINE MATH

DISPLAYED MATH

EOUATION LABELS

ENUNCIATIONS

ILLUSTRATIONS

MATH FONTS

MEANINGFUL MATH

MISCELLANEOUS

```
\startformula
  \lim_{h\tendsto 0^^{+}}\frac{\phi(0+h)-\phi(0)}{h}
  = \lim_{h\tendsto 0^^{+}}\phi'(\xi_h)
  = A.
  \qedhere
  \stopformula
\stopProof
```

\startProof

[title={of \in{Theorem}[thm:lHospital]}]
Since \m {g'} is a Darboux function it will not change sign in \m
{\openinterval {a,b}}, and for simplicity we assume that \m {g' > 0} in
this interval. Lagrange's mean value theorem assures that \m {g} is
strictly monotone in the interval \m {\rightopeninterval {a,b}} and thus
that it has an inverse \m {\inverse{g}\maps \rightopeninterval {0,g(b)}
\to \rightopeninterval {a,b}}.

The composite function $\mbox{m} \{\mbox{phi} \mbox{m} apsto f(\inverse{g}\of(t))\}, \mbox{m} \{t \in \rightopeninterval {0,g(b)}\} is continuous at \mbox{m} \{t = 0\} and differentiable for \mbox{m} \{t \in \openinterval {0, g(b)}\}. By the substitution \mbox{m} \{t = g(x)\} in the given limit, together with the chain rule and the rule of derivatives of inverse functions, we get$

```
\startformula
A = \lim_{x\tendsto a^^{+}} \frac{f'(x)}{g'(x)}
```

```
INTRODUCTION
     = \lim {t\tendsto 0^^{+}} \frac{f'(\inverse{g}\of(t))}
                                   {g'(\inverse{g}\of(t))}
                                                                              GETTING STARTED
     = \lim \{t \in 0^{+}\} \int dd \{d \}
     = \lim \{t \in 0^{+}\} \in (t).
                                                                              BUILDING BLOCKS
  \stopformula
                                                                                KEYWORDS
  By \lambda = q(x)
                                                                               INLINE MATH
  again, we conclude that
                                                                              DISPLAYED MATH
  \startformula
                                                                              EQUATION LABELS
   A = \lim \{t \ge 0^{+}\} \setminus \{nac(\theta+t) - \theta(0)\} \{t\}
     = \lim {t\tendsto 0^^{+}} \frac{f(\inverse{g}\of(t))}{t}
                                                                              ENUNCIATIONS
     = \lim \{x \in a^{+}\} \int \{g(x)\}
  \stopformula
                                                                              ILLUSTRATIONS
                                                                               MATH FONTS
 This completes the proof.
\stopProof
                                                                             MEANINGFUL MATH
% \stoptext
                                                                              MISCELLANEOUS
```

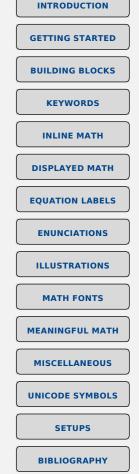
On the next few pages we show the result after compiling this small example. We added a \switchtobodyfont[antykwa], to vary the look a little. More information on the use of fonts, as well as small examples of the available math fonts, can be found in Chapter 9.

BIBLIOGRAPHY

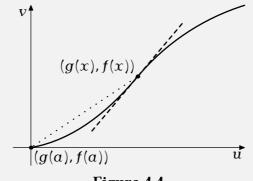
UNICODE SYMBOLS

SETUPS

We prove the l'Hospital rule directly from the Lagrange mean value theorem, without using the Cauchy mean value theorem.


Anders Holst Mikael P. Sundqvist

Abstract. At our first-year calculus course for engineers we discuss Lagrange's mean value theorem but not Cauchy's mean value theorem, and for this reason we usually give a weak form of l'Hospital's rule on limits. In this note we give a simple proof of the stronger version of l'Hospital's rule, using only Lagrange's mean value theorem and elementary results on limits and derivatives.


We formulate and prove the l'Hospitals rule for one-sided limits. This in fact strengthen the usual formulation slightly.

Theorem 1.1 (l'Hospital's rule). Assume that the functions f and g are continuous in [a, b) and differentiable in (a, b). Assume further that f(a) = g(a) = 0 and that $g'(x) \neq 0$ in (a, b). If $f'(x)/g'(x) \rightarrow A$ as $x \rightarrow a^+$, then $f(x)/g(x) \rightarrow A$ as $x \rightarrow a^+$.

A geometric interpretation of the l'Hospital rule goes as follow. In the *uv*-plane, draw the curve parametrized by u = g(x) and v = f(x). Then the direction coefficient f(x)/g(x) of the secant (dotted in Figure 1.1) connecting (g(x), f(x)) with (g(a), f(a)) = (0, 0) should approach the same value as the direction coefficient

f'(x)/g'(x) of the tangent to the curve at (g(x), f(x)) (dashed in Figure 1.1) as x approaches a. Our proof of the theorem uses that we can parametrize this curve locally around the origin as a function graph u = t and $v = f(g^{-1}(t))$.

The only place in our proof where Lagrange's mean value theorem occurs is in this useful property of right-hand side derivatives.

Lemma 1.2. Let c > 0. Assume that $\phi: [0, c) \to \mathbb{R}$ is continuous in [0, c) and differentiable in (0, c), and that $\lim_{t\to 0^+} \phi'(t)$ exists and equals *A*. Then

$$\lim_{h \to 0^+} \frac{\phi(0+h) - \phi(0)}{h} = A$$

Proof. For $h \in (0, c)$ the differential quotient $(\phi(0 + h) - \phi(0))/h$ equals $\phi'(\xi_h)$ for some $\xi_h \in (0, h)$, by Lagrange's mean value theorem. As $h \to 0^+$ we have $\xi_h \to 0^+$, and so

BIBLIOGRAPHY

29

$$\lim_{h \to 0^+} \frac{\phi(0+h) - \phi(0)}{h} = \lim_{h \to 0^+} \phi'(\xi_h) = A.$$

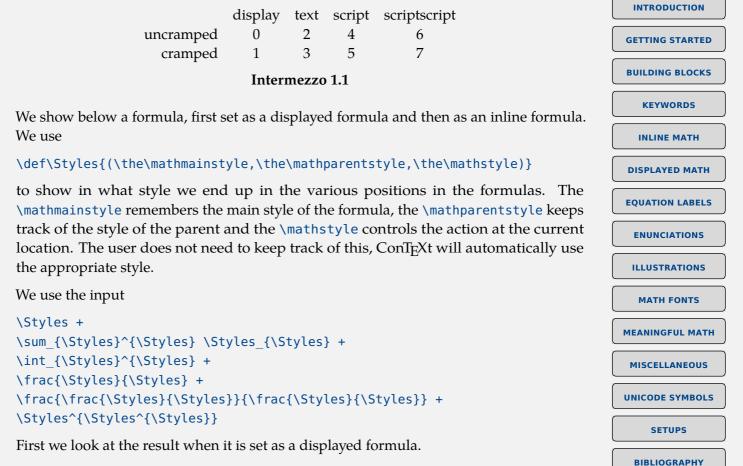
Proof (of Theorem 1.1). Since g' is a Darboux function it will not change sign in (a, b), and for simplicity we assume that g' > 0 in this interval. Lagrange's mean value theorem assures that g is strictly monotone in the interval [a, b) and thus that it has an inverse g^{-1} : $[0, g(b)) \rightarrow [a, b)$.

The composite function $\phi: t \mapsto f(g^{-1}(t)), t \in [0, g(b))$ is continuous at t = 0 and differentiable for $t \in (0, g(b))$. By the substitution t = g(x) in the given limit, together with the chain rule and the rule of derivatives of inverse functions, we get

$$A = \lim_{x \to a^+} \frac{f'(x)}{g'(x)} = \lim_{t \to 0^+} \frac{f'(g^{-1}(t))}{g'(g^{-1}(t))} = \lim_{t \to 0^+} \frac{d}{dt} f(g^{-1}(t)) = \lim_{t \to 0^+} \phi'(t).$$

By Lemma 1.2, and by substitution t = g(x) again, we conclude that

$$A = \lim_{t \to 0^+} \frac{\phi(0+t) - \phi(0)}{t} = \lim_{t \to 0^+} \frac{f(g^{-1}(t))}{t} = \lim_{x \to a^+} \frac{f(x)}{g(x)}.$$


This completes the proof.

1.4 A bit more into the details

This section contains some more details about different math modes available, and since it is a bit technical, one could skip it at a first reading.

In traditional T_EX there is really a difference between the inline formulas (what we end up in between single dollars) and displayed formulas (double dollars). With the recent development of math in ConT_EXt, this difference is now gone. There is really only one math mode (inline), but we can enter it with different styles.

INTRODUCTION **GETTING STARTED** BUILDING BLOCKS **KEYWORDS INLINE MATH DISPLAYED MATH EQUATION LABELS ENUNCIATIONS ILLUSTRATIONS** MATH FONTS **MEANINGFUL MATH** MISCELLANEOUS UNICODE SYMBOLS SETUPS **BIBLIOGRAPHY**

\startformula

\getbuffer[styleformula] \stopformula

$$(0,0,0) + \sum_{(0,0,5)}^{(0,0,4)} (0,0,0)_{(0,0,5)} + \int_{(0,0,5)}^{(0,0,4)} + \frac{(0,0,1)}{(0,0,1)} + \frac{\frac{(0,1,5)}{(0,1,5)}}{\frac{(0,1,5)}{(0,1,5)}} + (0,0,0)^{(0,0,4)^{(0,4,6)}}$$

Then we see how it comes out when it is set as an inline formula.

\m{\getbuffer[styleformula]}

 $(2,2,2) + \sum_{(2,2,5)}^{(2,2,4)} (2,2,2)_{(2,2,5)} + \int_{(2,2,5)}^{(2,2,4)} + \frac{(2,2,5)}{(2,2,5)} + \frac{\frac{(2,5,7)}{(2,5,7)}}{\frac{(2,5,7)}{(2,5,7)}} + (2,2,2)^{(2,2,4)^{(2,4,6)}}$

The user can enforce a certain style, see the tables below. For the ones that start with trigger only the change imposed by the name is done. So, for example \triggercrampedstyle will enable cramped mode, without altering the display/tex/script/script style.

	uncramped	cramped	
display	\displaystyle	\crampeddisplaystyle	ſ
text	\textstyle	\crampedtextstyle	L
script	\scriptstyle	\crampedscriptstyle	
scriptscript	\scriptscriptstyle	\crampedscriptscriptstyle	
	_		

Intermezzo 1.2

INTRODUCTION

GETTING STARTED

BUILDING BLOCKS

ILLUSTRATIONS

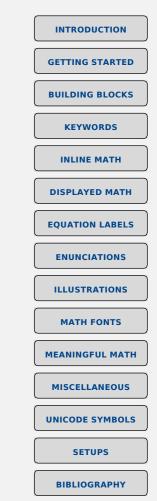
MATH FONTS

MEANINGFUL MATH

MISCELLANEOUS

UNICODE SYMBOLS

SETUPS


\triggerdisplaystyle \triggeruncrampedstyle \triggertextstyle \triggercrampedstyle \triggerscriptstyle \triggerscriptscriptstyle

Intermezzo 1.3

\triggersmallstyle \triggeruncrampedsmallstyle \triggeruncrampedbigstyle \triggercrampedsmallstyle \triggercrampedbigstyle

\triggerbigstyle

Intermezzo 1.4

2 The building blocks of formulas

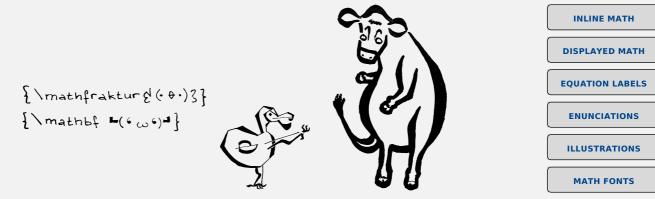
2.1 Alphabets and styles

By default, when we type Latin letters in math mode, we get italic Latin letters. For example, $\[M] xyzXYZ\]$ gives xyzXYZ. However, in Unicode math, there are slots for several math alphabets with differently styled Latin letters. We show how to access them in Intermezzo 2.1. In fact, Unicode Math does only have a Script alphabet. A few fonts combine Calligraphic as a substitution, but TEXGyre Pagella, that we use here, does not. That is the reason we get the same output for both these alphabets. The macros we show can be used both as a grouped macro and as a macro with an argument. This means that, for example, both {\mathfrak abcABC} and \mathfrak{abcABC} give the same result, abc \mathfrak{ABC} .

Serif	\mathrm	abcABC
Sans	\mathss	abcABC
Typewriter	\mathtt	abcABC
Calligraphic	\mathcal	abcABC
Script	\mathscr	abcABC
Fraktur	\mathfrak	abcABC
Doublestruck bold	\mathbb	abcABC

Intermezzo 2.1

Some alphabets are available in more than one style, as shown in Intermezzo 2.2. When entering math mode, the default style for the serif alphabet is italic.


GETTING STARTED
BUILDING BLOCKS
KEYWORDS
INLINE MATH
DISPLAYED MATH
EQUATION LABELS
ENUNCIATIONS
ILLUSTRATIONS
MATH FONTS
MEANINGFUL MATH
MISCELLANEOUS
UNICODE SYMBOLS
SETUPS
BIBLIOGRAPHY

INTRODUCTION

Normal Italic Bold Bold italic	<pre>\mathtf abcABC \mathit abcABC \mathbf abcABC \mathbf abcABC \mathbi abcABC</pre>	INTRODUCTION GETTING STARTED BUILDING BLOCKS
Inte	ermezzo 2.2	KEYWORDS
When we change to a different alphabet, font style does not automatically switch		
\startformula	DISPLAYED MATH	
<pre>\mathss u + v \neq \mathit u + v \stopformula</pre>	EQUATION LABELS	
u + v <i>≠</i>	$\neq u + v \neq u + v$	ENUNCIATIONS
Most fonts lack at least some alphabets. glyphs for the bold fraktur and the lowe	ILLUSTRATIONS	
\startformula	MATH FONTS	
<pre>\mathbb a + A \neq \mathfrak a \stopformula</pre>	MEANINGFUL MATH	
	$a = a + A \neq a + A$	MISCELLANEOUS
The same snippet in T _E XGyre Pagella Ma	UNICODE SYMBOLS	
a + A ≠	$\neq \mathfrak{a} + \mathfrak{A} \neq \mathfrak{a} + \mathfrak{A}$	SETUPS
In fact, regarding the calligraphic and		

In fact, regarding the calligraphic and script alphabets, only the script has dedicated Unicode slots. Some fonts have a calligraphic alphabet in these slots, and others have 36

script alphabets there. Only a few come with both, and then the other is given as a style alternative. In the configured math fonts, ConTEXt will give the correct results for \mathcal and \mathcal and \mathcal if both alphabets exist in the font. If only one of them exists, you will get that one in both cases. We show in Chapter 9 how to use the calligraphic and script alphabets (in fact, any alphabet) from a different font.

In addition to the Latin alphabets, the Greek alphabet is often used. Since most keyboards lack the greek letters, they are obtained via macros, such as $im{alphabetagamma}$ for $\alpha\beta\gamma$. Alternatively, if the user's keyboard or input method supports Unicode, they can directly input the Greek letters by typing $im{\alpha\beta\gamma}$. While it is possible to call for the correct Unicode slot for each letter directly, this can be rather cumbersome.

```
\tartformula
\alpha = \alpha = \tartformula
```

INTRODUCTION GETTING STARTED BUILDING BLOCKS KEYWORDS

MEANINGFUL MATH

MISCELLANEOUS

UNICODE SYMBOLS

SETUPS

\stopformula

 $\alpha = \alpha = \alpha = \alpha$

By convention, uppercase Greek letters are set upright while the default style for lowercase Greek letters is italic, and this convention is followed in ConTEXt. We can use \setupmathematics to alter this default. If we want to enforce an upright or italic style for Greek letters locally, we can use the \mathgreekupright and \mathgreekitalic commands.

\startformula

```
\alpha\beta\Gamma \neq
\mathgreekupright
\alpha\beta\Gamma \neq
\mathgreekitalic
\alpha\beta\Gamma
\stopformula
```

 $\alpha\beta\Gamma\neq\alpha\beta\Gamma\neq\alpha\beta\Gamma$

The logic behind the decision on which alphabets have been included in Unicode can sometimes be difficult to understand. For serif Greek, there are four styles available: normal, italic, bold, and bold italic. However, for sans serif Greek, only bold and bold italic alphabets are available, with no normal or italic options.

\startformula
 \alpha\beta\Gamma \neq
 \mathbf
 \alpha\beta\Gamma \neq
 \mathss\mathbf

UNICODE SYMBOLS

SETUPS

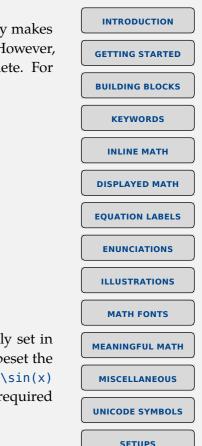
\alpha\beta\Gamma \neq
\mathgreekitalic
\alpha\beta\Gamma \neq
\mathgreekupright
\alpha\beta\Gamma
\stopformula

 $\alpha\beta\Gamma\neq\alpha\beta\Gamma\neq\alpha\beta\Gamma\neq\alpha\beta\Gamma\neq\alpha\beta\Gamma\neq\alpha\beta\Gamma$

Do not use more styles or weights than you really need.

2.2 Non-alphabetic symbols

Symbols that are not part of the alphabet can be entered directly via the keyboard, such as the plus sign (+), minus sign (-), and equals sign (=). However, some symbols require the use of macros, like the wedge symbol (\wedge) in the example below.


```
\startformula
    u \wedge v + v \wedge u = 0
\stopformula
```

 $u \wedge v + v \wedge u = 0$

See Chapter 12 for an extensive list of symbols and the macros connected with them. We will also show how to define new symbols and other constructions, when needed.

2.3 Bold math

The techniques we have covered for changing the style of alphanumeric characters do not apply to non-alphanumeric symbols. Some math fonts include a bold weight that can be

BIBLIOGRAPHY

activated using the \mb command. As shown in the example below, this not only makes the characters bolder, but also affects the bar, plus, and equal signs, and so on. However, it's worth noting that in the fonts we've tested, the bold families are not complete. For that reason, faking bold is often used instead.

\startformula

abc + 2592 = xyz + 2^5 \times 9^2 \breakhere
\mathbi abc + 2592 = xyz + 2^5 \times 9^2 \breakhere
\mb abc + 2592 = xyz + 2^5 \times 9^2
\stopformula

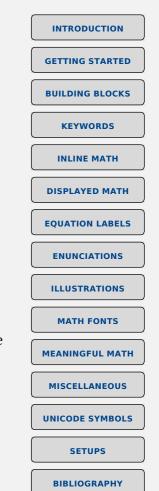
 $abc + 2592 = xyz + 2^5 \times 9^2$ $abc + 2592 = xyz + 2^5 \times 9^2$ $abc + 2592 = xyz + 2^5 \times 9^2$

2.4 Mathematical expressions and functions

Mathematical expressions and functions that have a fixed meaning are typically set in an upright style, with additional space added around them. For example, to typeset the sine function, which is typically written in an upright style, we use the command sin(x) instead of sin(x), which would produce sin(x). In the most common cases, the required commands for these functions are predefined, see Intermezzo 2.3.

\arc	cos arccos(:	x) ∖arcsin	$\arcsin(x)$	\arctan	$\arctan(x)$	INTRODUCTION
	cosh arccosh	. ,	· · · ·		· · ·	GETTING STARTED
\aco		r) \asin	$\arcsin(x)$	\atan	$\arctan(x)$	
\arg	$\arg(x)$	\cos	$\cos(x)$	\cosh	$\cosh(x)$	BUILDING BLOCKS
\cot	$\cot(x)$	\coth	$\operatorname{coth}(x)$	\csc	$\csc(x)$	KEYWORDS
\deg	deg(x)	\diff	d(<i>x</i>)	\dim	$\dim(x)$	KETWORDS
\exp	$\exp(x)$	\hom	hom(x)	\ker	$\ker(x)$	INLINE MATH
\lg	lg(x)	\ln	$\ln(x)$	\log	$\log(x)$	
\sec	$\sec(x)$	\sin	$\sin(x)$	\sinh	$\sinh(x)$	DISPLAYED MATH
\tan	$\tan(x)$	\tanh	tanh(x)			EQUATION LABELS

Intermezzo 2.3


These are defined with \definemathfunction, as for example

\definemathfunction[cos]

We often use subscripts for some of these constructions, which can be placed either in-line or below (or above) the text.

```
We expect \lim_{x\to\infty} f(x) in inline math, but in a displayed math we prefer
```

```
\startformula
  \lim_{x\to+\infty} f(x).
\stopformula
```

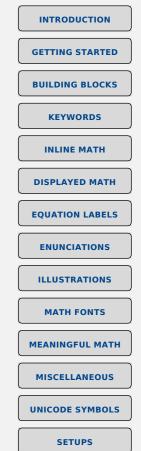

 $\lim_{x\to+\infty}f(x).$

The macro \lim is defined as

\definemathfunction
 [lim]
 [mathlimits=auto]

and the mathlimits=auto option places the subscripts below in displayed formulas. Below is a list of the math functions defined with this limit behavior (either mathlimits=auto or mathlimits=yes).

\det	det A	\gcd	gcd(<i>m</i> , <i>n</i>)	∖inf	$\inf_{x \in \mathbb{R}} f(x)$
\inv	inv A	\injlim	$\operatorname{inj}\lim(A_i)$	\liminf	$\liminf a_n$
\limsup	$\limsup a_n$	\lim	$\lim_{x \to 0^+} (1+x)^{1/x}$	\median	median <i>x</i>
\max	$\max(1, 2, 3)$	\min	min(1, 2, 3)	\mod	$a \mod b$
\projlim	proj lim ⁽ⁱ⁾	\Pr	$\Pr(A \cap B)$	\sup	$\sup_{x\in\Omega}f(x)$


Intermezzo 2.4

We can use \mfunction to typeset a function that is not predefined.

If we plan to use the same function in multiple places, it is recommended to define a new instance with \definemathfunction.

\definemathfunction[hav]

\startformula


```
hav(\theta) = \frac{1 - \cos(\theta)}{2}
```

$$hav(\theta) = \frac{1 - \cos(\theta)}{2}$$

Although we could have explicitly added mathlimits=no to the definition of \hav, we skipped it since it is already the default behavior.

Some math functions, like \injlim and \projlim, vary with the language. If we typeset $\inf\{(1)\} = projlim^{(1)}\}$ we get $injlim^{(1)} = projlim^{(1)}$. If we first switch to Spanish and typeset it, we get instead lím $iny^{(1)} = lím proy^{(1)}$. For the \injlim and \projlim some prefer a variant.

```
\setupmathlabeltext
```

```
[en]
[varprojlim={\wideunderleftarrow{\lim}}]
```

```
\setupmathlabeltext
```

[en]
[varinjlim={\wideunderrightarrow{\lim}}]

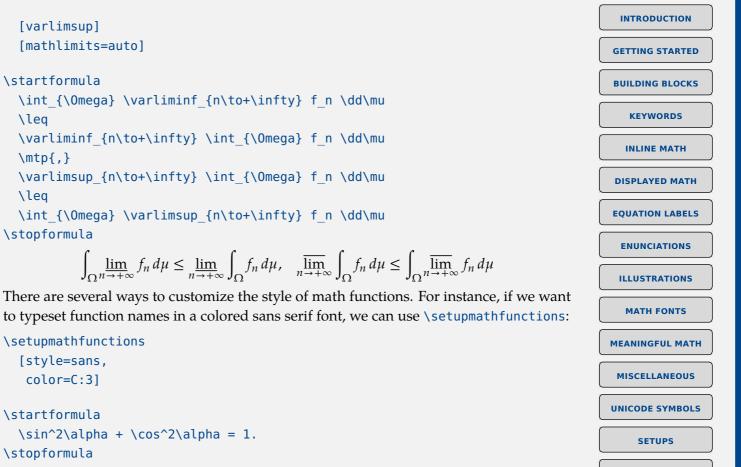
```
\definemathfunction
[varprojlim]
[mathlimits=no]
```

\definemathfunction
[varinjlim]

GETTING STARTED
BUILDING BLOCKS
KEYWORDS
INLINE MATH
DISPLAYED MATH
EQUATION LABELS
ENUNCIATIONS
ILLUSTRATIONS
MATH FONTS

INTRODUCTION

MEANINGFUL MATH


MISCELLANEOUS

UNICODE SYMBOLS

SETUPS


```
\definemathfunction
```


 $\sin^2 \alpha + \cos^2 \alpha = 1.$

INTRODUCTION **GETTING STARTED** BUILDING BLOCKS **KEYWORDS INLINE MATH DISPLAYED MATH EQUATION LABELS ENUNCIATIONS ILLUSTRATIONS** MATH FONTS **MEANINGFUL MATH** MISCELLANEOUS UNICODE SYMBOLS SETUPS **BIBLIOGRAPHY**

By default the upright alphabet in the math font is used for functions. If we instead want to use the text font, we can use \mathtexttf.

\setupmathfunctions
[style=\mathtexttf]

```
\startformula
  \sin^2\alpha + \cos^2\alpha = 1.
  \stopformula
```

 $\sin^2 \alpha + \cos^2 \alpha = 1.$

It is also possible to set the colors one by one when typing the formula. But please be a bit careful. Since for example $\cos[(x + y)(x - y)]$ is a valid formula, we do not want to activate the brackets here. For that reason you need to use the built-in \mfunction to apply the settings at one place.

When setting colors for individual functions, it is important to avoid inadvertently activating any special formatting. For example, the expression $\cos[(x + y)(x - y)]$ contains brackets that should not be considered as brackets for arguments. To ensure this, we use instead the \mfunction command.

```
\startformula
\mfunction[color=C:3]{cos}[(x + y)(x - y)]
\neq
\mfunction[color=C:2][cos][(x + y)(x - y)]
\neq
\cos[color=C:1](\alpha)
```

INTRODUCTION **GETTING STARTED BUILDING BLOCKS KEYWORDS INLINE MATH DISPLAYED MATH EQUATION LABELS ENUNCIATIONS ILLUSTRATIONS** MATH FONTS **MEANINGFUL MATH** MISCELLANEOUS UNICODE SYMBOLS SETUPS **BIBLIOGRAPHY**

\stopformula

 $\cos[(x+y)(x-y)] \neq \cos[(x+y)(x-y)] \neq \cos[\operatorname{color} = C:1](\alpha)$

The last example "fails" on purpose.

2.5 Fences

Fences, also known as paired delimiters, are a pair of symbols used to visually group parts of a formula. The most commonly used symbols for fences are parentheses (), brackets [], braces { }, angle brackets $\langle \rangle$, bars ||, and double vertical bars || ||. These paired symbols are often used when nested bracketing is needed, such as $3\{[f(x) + g(x)] + h(x)\}$.

In Section 1.2, you may have seen two ways to typeset fences: using \fenced or using \left and \right pairs. Let's take a look at a few more examples.

```
\startformula
```

<pre>\fenced[parenthesis]</pre>	{	$1 + \frac{a}{b}$	}	
\fenced[bracket]	{	F(x)^2	}_a^b	
<pre>\fenced[bracket][size=big]</pre>	{	F(x)^2	}_a^b	
\fenced[brace]	{	$frac{x}{n}$	}	
\fenced[angle]	{	f, g	}	

\stopformula

$$\left(1+\frac{a}{b}\right) \quad \left[F(x)^2\right]_a^b \quad \left[F(x)^2\right]_a^b \quad \left\{\frac{x}{n}\right\} \quad \left\langle f,g\right\rangle$$

In the example above, the key size=big is used to specify a particular size for the bracket. The available options are big, Big, bigg, and Bigg, or alternatively, a number can be the base character will be used instead.

 $a\fenced[parenthesis]{b + c}d =$

a\left(b + c \right)d

\startformula

\stopformula

\startformula

\stopformula

left d, g

a(b + c)d =

INTRODUCTION specified, such as 1, 2, 3, or 4. If you set size=0, the fence will not be scaled at all, and **GETTING STARTED** BUILDING BLOCKS **KEYWORDS INLINE MATH DISPLAYED MATH** If you use the system with \left and \right, you can also enforce different sizes with EQUATION LABELS help of \F. For example, \F1 gives the same as big. Note that these in fact change a state, **ENUNCIATIONS ILLUSTRATIONS** MATH FONTS **MEANINGFUL MATH** MISCELLANEOUS UNICODE SYMBOLS SETUPS

BIBLIOGRAPHY

The size of the fences can be calculated with different methods, and the result depends on the vertical variants that the font supports. Traditionally T_FX provided the base size, four variants and extensibles. The four variants could be accessed with the help of big,

 $\left(1+\frac{a}{b}\right) \left[F(x)^2\right]_a^b \left[F(x)^2\right]_a^b \left\{\frac{x}{b}\right\} \langle f,g\rangle$

 $\mbox{mtp}{}$

\mtp{}

a(b+c)d = a(b+c)d = a(b+c)d

so you have to group if you do not want them to spill over to the upcoming fences.

\right\rangle

 $\left(1 + \frac{a}{b} \right)$ $\left[F(x)^2 \right]$

 $\{F1 \in F(x)^2 \land right a^b\}$

 $\left\{ \int \frac{x}{n} \right\}$

Big, bigg, and Bigg. With Opentype math fonts, there can be many more variants. If we do not specify the size to the fence macro, we get the size that fits. We can specify the size explicitly, either with the keywords just mentioned or by using numbers. The variants that are used can be decided via the \setupmathfence. If alternative=big is used (default) the variants specified in the goodie file are used. If alternative=small is used, then for example size=3 really gives the third variant.

\im{

\fenced[parenthesis][size=7]{ \fenced[parenthesis][size=6]{ \fenced[parenthesis][size=5]{ \fenced[parenthesis][size=4]{ \fenced[parenthesis][size=3]{ \fenced[parenthesis][size=2]{ \fenced[parenthesis][size=1]{ \fenced[parenthesis][size=0]{A}}}}

INTRODUCTION **GETTING STARTED** BUILDING BLOCKS **KEYWORDS INLINE MATH DISPLAYED MATH EQUATION LABELS ENUNCIATIONS ILLUSTRATIONS** MATH FONTS **MEANINGFUL MATH** MISCELLANEOUS UNICODE SYMBOLS SETUPS **BIBLIOGRAPHY**


 $\left(\left(\left(\left(\left(((A))\right)\right)\right)\right)\right) = \left(\left(\left(\left(((A))\right)\right)\right)\right)$

alternative=big

This is how it looks for Garamond Math.

alternative=small

This is how it looks for Lucida Bright Math.

 $\left(\left(\left(\left(\left(((A))\right)\right)\right)\right)\right) = \left(\left(\left(\left(((A))\right)\right)\right)\right)\right)$

alternative=big

alternative=small

And this is how it looks for T_FXGyre Bonum Math.

 $\left(\left(\left(\left(\left(((A))\right)\right)\right)\right)\right) = \left(\left(\left(\left(((A))\right)\right)\right)\right)$

alternative=big

alternative=small

As you can see, the fonts behave differently. Once you are aware of this, you can set the alternative you like best with \setupmathfence.

In formulas where you need no manual size tweaking, you can use \autofences. The result is that identified delimiter pairs will automatically scale to the size that would have been used if \left and \right had been used.

\startformula \autofences

INTRODUCTION **GETTING STARTED** BUILDING BLOCKS **KEYWORDS INLINE MATH DISPLAYED MATH EQUATION LABELS ENUNCIATIONS ILLUSTRATIONS** MATH FONTS **MEANINGFUL MATH** MISCELLANEOUS UNICODE SYMBOLS SETUPS

($1 + \int ac{a}{b}$)	
[F(x)^2]_a^b	
\{	$frac{x}{n}$	\}	
\langle	f, g	\rangle	
($\sum_{k=1}^n a_k$)	
\stopformu	ıla		

$\left(1+\frac{a}{b}\right)$	$\left[F(x)^2\right]_a^b$	$\left\{\frac{x}{n}\right\}$	$\langle f,g \rangle$	$\left(\sum_{k=1}^{n} a_k\right)$
------------------------------	---------------------------	------------------------------	-----------------------	-----------------------------------

INTRODUCTION **GETTING STARTED BUILDING BLOCKS KEYWORDS INLINE MATH DISPLAYED MATH EQUATION LABELS ENUNCIATIONS ILLUSTRATIONS** MATH FONTS **MEANINGFUL MATH** MISCELLANEOUS UNICODE SYMBOLS SETUPS

BIBLIOGRAPHY

As the parentheses around the sum shows, this might lead to larger sizes than one usually wants.

It is considered good style to define own fences for the ones that you use often. This gives you a consistent document, and it enables you to change all occurrences of a specific construction without touching the other ones. We define a paired delimiter Set intended to be used for sets (there is already set pre-defined for this purpose).

```
\definemathfence
```

```
[Set]
[brace]
[define=yes,
middle=`|]
```

We have defined Set as a copy of the brace fence. Thanks to define=yes the definition also creates a macro \Set that can be used instead of \fenced[Set], and we also gave the bar to be used as a separator by using \fence. Note the backtic there to provide a number

to the middle key. To prevent the extra creation of the macro, we can add define=no. We look at a few examples where the \Set fence is used.

\startformula

\Set{ x\in\reals \fence \frac{x^2}{a^2} < 1 } =
 \Set{ x\in\reals \fence x^2 < a^2 } =
 \Set[size=1]{ x\in\reals \fence x^2 < a^2 }
 \stopformula</pre>

$$\left\{ x \in \mathbb{R} \mid \frac{x^2}{a^2} < 1 \right\} = \left\{ x \in \mathbb{R} \mid x^2 < a^2 \right\} = \left\{ x \in \mathbb{R} \mid x^2 < a^2 \right\}$$

We give one more example, where we use an empty left delimiter.

\definemathfence
[evaluate]
[define=yes,
 left=none,
 right=`|]

We use it like this.

\startformula

- \int_1^2 x^2 \dd x
- = $\operatorname{valuate} \{ \frac{x^3}{3} \}_{1^2}$
- = $\frac{2^3}{3} \frac{1^3}{3}$
- = \frac{7}{3}

INTRODUCTION

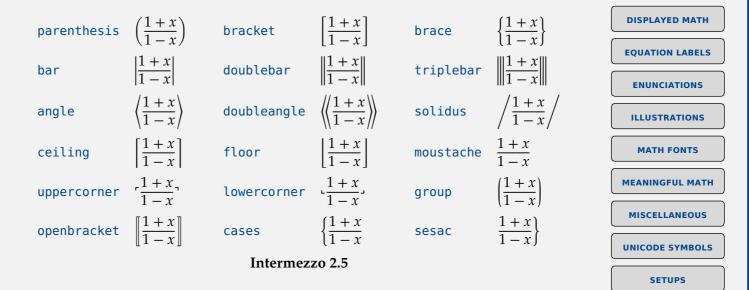
GETTING STARTED

BUILDING BLOCKS

MATH FONTS

MEANINGFUL MATH

MISCELLANEOUS


UNICODE SYMBOLS

SETUPS

\stopformula

$$\int_{1}^{2} x^{2} dx = \frac{x^{3}}{3} \Big|_{1}^{2} = \frac{2^{3}}{3} - \frac{1^{3}}{3} = \frac{7}{3}$$

In Intermezzo 2.5 we list some predefined fences (the moustache is not present in T_EXGyre Pagella Math, you have to use your imagination, perhaps you can picture Salvador Dalí). There are some more, you can try for example mirrored versions, as in mirroredfloor.

We emphasize again that it is important to clearly define new instances that convey meaning. If you require angular brackets for the inner product and occasionally need INTRODUCTION

GETTING STARTED

BUILDING BLOCKS

KEYWORDS

INLINE MATH

[IP] [angle]

[define=yes, middle=`|]

definition of **\IP**.

\startformula

\stopformula

54 INTRODUCTION a vertical bar in the middle, you can create a fence called IP that possesses the desired properties (again, there is a fence innerproduct pre-defined with these properties). **GETTING STARTED BUILDING BLOCKS KEYWORDS INLINE MATH DISPLAYED MATH EQUATION LABELS ENUNCIATIONS ILLUSTRATIONS** MATH FONTS **MEANINGFUL MATH** MISCELLANEOUS

SETUPS

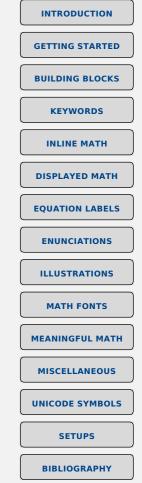
BIBLIOGRAPHY

\definemathfence Once defined, you can utilize \IP throughout your document with ease. Additionally, if you ever need to modify the notation for inner products, you can simply update the \IP{\phi \fence \psi} = \int {\Omega} \conjugate{\phi(x)}\psi(x) \dd \mu(x) $\langle \phi | \psi \rangle = \int_{\Omega} \overline{\phi(x)} \psi(x) \, d\mu(x)$ There are a few fences for intervals predefined (see Intermezzo 2.6). closedinterval [a,b]UNICODE SYMBOLS (*a*, *b*)]*a*, b[openinterval varopeninterval leftopeninterval (*a*, *b*] varleftopeninterval [a,b]rightopeninterval [a, b]varrightopeninterval [a, b] Intermezzo 2.6

In fact, all these intervals are inheriting from the interval fence, so we can setup all of them at once.

```
\setupmathfence
[interval]
[color=C:3,
    symbolcolor=C:2]
```

```
\startformula
```


\fenced[openinterval]{a,b} = \fenced[varopeninterval]{a,b}
\stopformula

$$(a,b) =]a,b$$

In a document, just as for the other fences, you typically define your own instances as the relevant copies.

```
\definemathfence
[ooint]
[varopeninterval]
[define=yes]
```

```
\startformula
A = \ooint{0,1} \cup \ooint{2,3} \breakhere
A = ]0,1[ \cup ]2,3[
```


\stopformula

$$A =]0, 1[\cup]2, 3[$$
$$A =]0, 1[\cup]2, 3[$$

There is some bracket matching magic going on in the second line here that makes the spacing around the brackets to be good. In traditional TEX the input $]0,1[\cup]2,3[$ in math would give very ugly spacing. It is more safe to use the fences mechanism, which automatically assigns the appropriate math atom type to the delimiters, ensuring proper spacing.

2.6 Sub- and superscripts

As we've seen in previous examples, superscripts are created using the caret symbol (^) and subscripts are created using the underscore symbol (_).

```
\startformula
    a_k = 2^k + 3^k
\stopformula
```

$$a_k = 2^k + 3^k$$

When setting more complicated expressions than single symbols as sub- or superscripts, it is necessary to use grouping.

\startformula

 $a_{k + 2} - 5a_{k + 1} + 6a_{k = 0}$ \stopformula

 $a_{k+2} - 5a_{k+1} + 6a_k = 0$

INTRODUCTION
GETTING STARTED
BUILDING BLOCKS
KEYWORDS
INLINE MATH
DISPLAYED MATH
EQUATION LABELS
ENUNCIATIONS
ILLUSTRATIONS
MATH FONTS
MEANINGFUL MATH
MISCELLANEOUS
UNICODE SYMBOLS
SETUPS

We have in fact so far only mentioned postscripts. It would be more correct to talk about postsubscripts and postsuperscripts. There is also native support for presubscripts and presuperscripts. They are accessed via triple carets or underscores.

\startformula

 $a^2 b + 3F_1_2(a,b;c;z) - X_1^2_3^{-4} \stopformula$

 $m{x^{(0.03)}}$

 $a^{2}b + 3_{2}F_{1}(a, b; c; z) - \frac{4}{3}X_{1}^{2}$

The mechanism of adding sub- and superscripts is slightly different for single characters and for larger constructions like big parentheses, or content put into boxes. We show an example below with a square of size 1cm. To the left it is considered as a single character, and the power two is placed on a certain height, as it would be on any character. To the right it is seen as a box, and the vertical placement of the power two is adapted.

MATH FONTS

MEANINGFUL MATH

UNICODE SYMBOLS

SETUPS

```
INTRODUCTION
GETTING STARTED
BUILDING BLOCKS
   KEYWORDS
  INLINE MATH
DISPLAYED MATH
EQUATION LABELS
 ENUNCIATIONS
 ILLUSTRATIONS
  MATH FONTS
MEANINGFUL MATH
 MISCELLANEOUS
UNICODE SYMBOLS
     SETUPS
 BIBLIOGRAPHY
```

Here we have used the math atom option single to obtain the first case. One place where this is adapted is for functions like \sin, and it is done in order to have the superscripts placed at the same height in formulas like $\cos^2 \alpha + \sin^2 \alpha = 1$.

2.7 Tensors, multilevel sub- and superscripts

In some areas of mathematics and physics it is common to use several sub- and superscripts. We can meet expressions like Γ_{ki}^n but also more complicated constructions like Γ_k^n . The good news is that this can be done pretty simply with the help of multiple sets of sub- and superscripts. By this we mean that it is possible to bound several sub- and superscripts to one atom. We show how the formulas in this paragraph were input, with one additional formula.

```
\startformula
  \Gamma^n_{ki}
  \neq \Gamma^{n} \noscript _{k} \noscript ^{i}
  \neq \Gamma^{n} ^{} __{k} _{k} _{}
  \stopformula
```

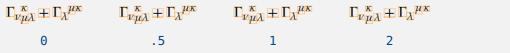
```
\Gamma_{ki}^{n} \neq \Gamma_{k}^{n}^{i} \neq \Gamma_{k}^{n}^{i}
```

The first one has only one level; one subscript and one superscript. The second one has three levels. In the innermost we only have a superscript and in the next only a subscript, and in the third, finally, only a superscript. We have stepped to the next level via \noscript. We can also use empty sub- or superscripts to enforce going to the next level, as in the third expression.

It is possible to tweak a bit where the indices show up vertically by using the alignscripts key of \setupmathematics. Below we see the formula

set with the indicated value of alignscripts, with the following code.

$\Gamma^{\kappa}_{\nu\mu\lambda} + \Gamma_{\lambda}$	$\Gamma_{\nu\mu\lambda}^{\kappa} + \Gamma_{\lambda}$	$\Gamma^{\kappa}_{\nu\mu\lambda} + \Gamma_{\lambda}$	$\Gamma^{\kappa}_{\nu\mu\lambda} + \Gamma_{\lambda}$
yes	always	empty	no


For horizontal spacing, it is a bit more complicated. Traditionally, T_EX adds \scriptspace after sub- and superscripts. One reason is that the glyphs in traditional fonts lie about their widths. It is always added but in some cases it is not wanted. In luametaT_EX we have more control over the inter atom spacing, which means that this space is no longer suitable for our needs.

In Unicode Math there is a font parameter SpaceAfterScript, that is trying to imitate the traditional T_EX approach. We need support for multiscripts and we want to avoid the unwanted spaces, so we need a slightly more advanced model. In fact, the SpaceAfterScript is still listened to, and the space is always added, but we have an extra parameter SpaceBetweenScript that gets added instead between different levels of a multiscript. So, between multiscripts we use SpaceBetweenScript instead.

In fact, what is really added is SpaceBetweenScript multiplied by interscriptfactor. This means that a value of 0 will result in no space added. The default value of interscriptfactor is 1.

```
\Gamma_{\nu}_{\kappa}_{\lambda}^{} +
\Gamma_{\lambda}\noscript^{\mu}^{\kappa}
```

INTRODUCTION **GETTING STARTED** BUILDING BLOCKS **KEYWORDS INLINE MATH DISPLAYED MATH EQUATION LABELS ENUNCIATIONS** ILLUSTRATIONS MATH FONTS **MEANINGFUL MATH** MISCELLANEOUS UNICODE SYMBOLS SETUPS **BIBLIOGRAPHY**

We give one more example. Since we by default ignore (regarding to vertical spacing) empty braces, we enter them for clarity.

```
\startformula
```

\stopformula

 $h^{\lambda}{}_{\kappa\mu}{}^{\nu}{}_{\phi} \in V \otimes V^* \otimes V^* \otimes V \otimes V^*$

Multiple prescripts are also possible, but perhaps of less usage. We show only one example. As you see, the ordering of the input is allowed to change.

```
\startformula
X_{1}^{2}___{a}^^{b}
_{3}^{4}__{c}^{d}
_{5}^{6}__{e}^{f}
=
X_{1}__{a}^^{b}^{2}
```

INTRODUCTION
GETTING STARTED
BUILDING BLOCKS
KEYWORDS
INLINE MATH
DISPLAYED MATH
EQUATION LABELS
ENUNCIATIONS
ILLUSTRATIONS
MATH FONTS
MEANINGFUL MATH
MISCELLANEOUS
UNICODE SYMBOLS
SETUPS
BIBLIOGRAPHY

_{3}___{c}^^{d}^{4} _{5}___{e}^^{f}^{6} \stopformula

 ${}^{b}_{a}X^{246}_{135} = {}^{b}_{a}X^{246}_{135}$

We give one nested example, found in some article.

```
\startformula
    a = a_ {b_{d}__{e}}
    ___{c_{f}__{g}}
\stopformula
```

 $a = {}_{g^{C_f}} a_{e^{b_d}}$

We remind you once more to be nice to your readers regarding the choice of notation.

2.8 Prime time

Primes are a often used, in particular to denote derivatives. They indicate the number of times a function has been differentiated, with a single prime denoting the first derivative, a double prime denoting the second derivative, and so on.

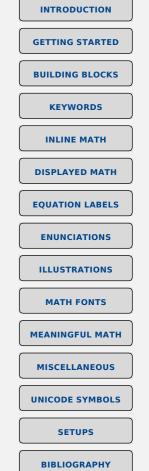
```
\startformula
f' + f'' + f''' + f''''
=
f\prime + f\prime\prime + f\prime\prime + f\prime\prime
```

INTRODUCTION **GETTING STARTED BUILDING BLOCKS KEYWORDS INLINE MATH DISPLAYED MATH EQUATION LABELS ENUNCIATIONS ILLUSTRATIONS** MATH FONTS **MEANINGFUL MATH** MISCELLANEOUS UNICODE SYMBOLS SETUPS **BIBLIOGRAPHY**

\stopformula

$$f' + f'' + f''' + f'''' = f' + f'' + f''' + f''''$$

Primes behave a bit like superscripts, but they are handled in their own way. If you just read the previous section, you know that we can have several levels of sub- and superscripts. This also applies to primes. In each level the primes are collected, and then put *outside* the superscript in that level, if present. If there happens to be a subscript only in the level, the primes are put on top of that. This means that if we want to type something like f'^2 we need to type $f\prime\noscript^{2}$ in order to push the superscript 2 into the next level. If you need to typeset the square of f', it is however likely nicer for the reader if you write $(f')^2$ rather than f'^2 .


Additional primes are not starting new levels of sub/superscripts. Instead they are collected and joined into some multiprime construction. Look closely at the following example. All different terms use one level, only.

```
\startformula
```

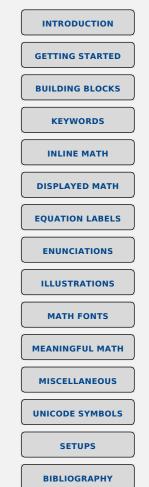
```
f_a^b' + f'_a^b + f_a'^b + f_a^b'' + f_a'^b'
\neq
f^b' + f'^b
\neq
f_a' + f'_a
\stopformula
```

 $f_a^{b\prime} + f_a^{b\prime} + f_a^{b\prime} + f_a^{b\prime\prime} + f_a^{b\prime\prime} + f_a^{b\prime\prime} \neq f^{b\prime} + f^{b\prime} \neq f_a^{\prime} + f_a^{\prime}$

Compare that with the following examples where we use two levels. Look carefully on where the primes end up.

\startformula
 f_a^b'_a' + f'_a^b'^b + f_a^b''^b
\stopformula

 $f_{a\ a}^{b\prime\prime} + f_{a}^{b\prime\prime b} + f_{a}^{b\prime\prime b}$


In the first part of the example the _a^b' make up one level, and then the _a forces the next level, and the prime there will then go above it, since there is no superscript in that level. In the second part of the example, the second prime is not starting a new group (remember, only sub- and superscripts do), but it is joined with the first prime into a double prime. The last ^b starts a new level. The third example is just a more clear way to write the second example. Use \noscript not only to force the next level, but also to make your code more clear.

The way primes are typeset can vary across different math fonts. Therefore, they are configured on a font-by-font basis in the goodie files. By using \mathscriptbelow we can visualize the line where the primes are anchored. (It also shows the lines where the sub-and superscripts are anchored.)

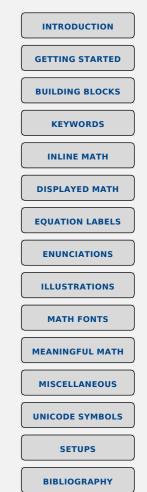
```
\startformula
  \mathscriptbelow
  f' \neq f^2
  \stopformula
```

 $f' \neq f^2$

If several levels are used, we run by default over the different levels and realign the primes so that all of them sit at the same height.

Let us also mention the \primed macro, that can be used to typeset primes in a different way (these types of constructions will be discussed again in Section 2.9 below).

```
\startformula
  (f')^2 = (\primed{f})^2 = \primed{f}^2 = f^{}\prime^2
  \neq
  (f^2)' = \primed{(f^2)} = \primed{f^2}
\stopformula
```


$$(f')^2 = (f')^2 = {f'}^2 = {f'}^2 \neq (f^2)' = (f^2)' = f^{2'}$$

Finally, it is not a good idea to write f^{\pm} or f^{\pm} since that will put the primes in the superscript, and the output will be different (and likely bad in many cases), f'. We end with an example found on the preprint server arXiv, showing a creative use of preand postscripts, as well as primes:

```
\startformula
\mathbf{D}_{t}^{\alpha}___{a}^^{C} f(t) =
\frac{1}{\Gamma(n - \alpha)}
\int_{a}^{t} \frac{1}{(t - t')^{\alpha + 1 - n}}
\frac{\dd^n}{\dd t^{}'^{n}} f(t') \dd t'
```

\stopformula

$${}^{C}_{a}\mathbf{D}^{\alpha}_{t}f(t) = \frac{1}{\Gamma(n-\alpha)} \int_{a}^{t} \frac{1}{(t-t')^{\alpha+1-n}} \frac{d^{n}}{dt'^{n}} f(t') dt'$$

2.9 Accents/embellishments

There are several predefined accents to put on characters. The accents below are meant for single characters, and do not stretch horizontally.

\grave	x	\acute	ź	\hat	\hat{x}
\tilde	\widetilde{x}	\bar	\bar{x}	\breve	x
\dot	<i>x</i>	\ddot	ÿ	\ring	<i>x</i> ̂
\check	x	\overleftharpoon	\dot{x}	\overrightharpoon	\vec{x}
\dddot	ïxï	\ddddot	\ddot{x}		

Intermezzo 2.7

To place accents over more than one character, we use the stretching variants available.

The notation \vec{x} (typeset with \vec{x}) is often used to indicate vectors, but some may argue that it is not truly an accent, and that it is not suitable for vector notation. Instead, it might be better to use upright bold symbols such as **x** for vectors. Alternatively, if there is no risk of confusion, you can use ordinary italic letters.

Some math fonts provide several sizes of accents, and some accents have an extensible recipe. When an accent is not extensible, ConT_EXt can scale the largest available piece horizontally to create the accent.

```
\startformula
\check{u} + \widecheck{uv} + \widecheck{uvw} +
\widecheck{uvwx} + \widecheck{abcdefghijklmnopqrstuvwxyz}
\breakhere
\hat{u} + \widehat{u} + \widehat{uv} + \widehat{uvw} +
```

INTRODUCTION

GETTING STARTED

BUILDING BLOCKS

KEYWORDS

INLINE MATH

DISPLAYED MATH

EQUATION LABELS

ENUNCIATIONS

ILLUSTRATIONS

MATH FONTS

MEANINGFUL MATH

MISCELLANEOUS

\widehat	$\widehat{x+y}$	\widetilde	$\widetilde{x+y}$		
\widebar	$\frac{1}{x+y}$	\widecheck	$\widetilde{x+y}$	GETTING STARTED	
\wideoverleftharpoon	$\overline{x+y}$	\wideoverrightharpoon	$\overline{x+y}$	BUILDING BLOCKS	
\wideoverleftarrow	$\overleftarrow{x+y}$	\wideoverrightarrow	$\overrightarrow{x+y}$	KEYWORDS	
\wideoverleftrightarrow	$\overleftarrow{x+y}$	\wideunderbar	x + y		
\wideunderleftrightarrow	x + y	\wideunderrightharpoon	$\frac{x+y}{x+y}$		
\wideunderleftharpoon	x + y	\wideunderleftarrow	x + y	DISPLAYED MATH	
\wideunderrightarrow	$\overline{x+y}$		<u> </u>	EQUATION LABELS	
	→ Intermezzo	0 2.8		ENUNCIATIONS	
		ILLUSTRATIONS			
<pre>\widehat{uvwx} + \widehat{abcdefghijklmnopqrstuvwxyz} \breakhere MATH FONTS</pre>					
<pre>\tilde{u} + \widetilde{u} + \widetilde{uvwx} + \widetild</pre>		MEANINGFUL MATH			
\stopformula		MISCELLANEOUS			
$\check{u} + \check{u} + \check{u}\check{v} + \check{u}\check{v}\check{w} + \check{u}\check{v}\check{w}$ +		UNICODE SYMBOLS			
$\hat{u} + \hat{u} + \hat{uv} + \hat{uvw} + \hat{uvw}$	SETUPS				
$\tilde{u} + \tilde{u} + \tilde{u}\tilde{v} + \tilde{u}\tilde{v}\tilde{w} + \tilde{u}\tilde{v}\tilde{w}$	$\tilde{u} + \tilde{u} + \tilde{u}\tilde{v} + \tilde{u}\tilde{v}\tilde{w} + \tilde{u}\tilde{v}\tilde{w}x + abcdefghijklmnopqrstuvwxyz$				
The extremely wide accents can sometimes look strange. A suggestion that we read about					

66

in [Swa99] is to enclose the content in parentheses and place the hat or tilde just to the right if the content is too wide. To achieve this, use the marked construction (see also below):

```
\startformula
  \widehat{f \ast g \ast h} =
    \hatmarked{(f \ast g \ast h)} =
    \hat{f} \hat{g} \hat{h}
\stopformula
```

$$\overline{f \ast g \ast h} = (f \ast g \ast h)^{\widehat{}} = \widehat{f}\widehat{g}\widehat{h}$$

INTRODUCTION **GETTING STARTED** BUILDING BLOCKS **KEYWORDS INLINE MATH DISPLAYED MATH EQUATION LABELS ENUNCIATIONS ILLUSTRATIONS** MATH FONTS **MEANINGFUL MATH** MISCELLANEOUS UNICODE SYMBOLS SETUPS **BIBLIOGRAPHY**

There are a few non-accent characters that come as marked versions (we have also seen \primed before). Judge for yourself which one you prefer.

```
\startformula
```

```
\daggermarked{Q}Q = Q^{\\dagger}Q \mtp{,}
\ddaggermarked{Q}Q = Q^{\\ddagger}Q \mtp{,}
\starmarked{Q}Q = Q^{\\star}Q \mtp{,}
\astmarked{Q}Q = Q^{\\star}Q
\stopformula
```

$$Q^{\dagger}Q = Q^{\dagger}Q, \quad Q^{\ddagger}Q = Q^{\ddagger}Q, \quad Q^{*}Q = Q^{*}Q, \quad Q^{*}Q = Q^{*}Q$$

We can put multiple accents on a letter, just by nesting the arguments. In Fourier analysis one might meet a formula like this one.

```
\startformula
    \hat{\hat{\hat{f}}} =
```

\check{\check{f}} = f
\stopformula

 $\hat{\hat{f}} = \check{f} = f$

Instead of building towers, it might then be better to use some other notation, like $\mathcal{F}^4 f = \mathcal{P}^2 f = f$. It is, however, worth to mention that the first accent is placed on the letter according to the anchoring point, and the rest of the accents are placed centered above the first one.

\startformula
 \hat{\dot{u}} =
 \dot{\hat{u}}
\stopformula

 $\hat{\dot{u}} = \dot{\hat{u}}$

There are several possible ways to create a longer bar or rule above an expression. These are sometimes used for closure or complex conjugation.

```
\startformula
  \bar{v} + \bar{w} =
  \widebar{v} + \widebar{w} =
  \widebar {v + w} =
  \overbar {v + w} =
  \overline {v + w} =
  (v + w)^*
```

GETTING STARTED
BUILDING BLOCKS
KEYWORDS
INLINE MATH
DISPLAYED MATH
EQUATION LABELS
ENUNCIATIONS
ILLUSTRATIONS
MATH FONTS
MEANINGFUL MATH
MISCELLANEOUS
UNICODE SYMBOLS
SETUPS
BIBLIOGRAPHY

\stopformula

 $\overline{v} + \overline{w} = \overline{v} + \overline{w} = \overline{v + w} = \overline{v + w} = \overline{v + w} = (v + w)^*$

The differences in output are due to different mechanisms used. The \bar gives a nonstretching macron accent, while the \widebar provides a stretching one. The \overbar is in fact not an accent at all, but a stacker (see below). The \overline does not use the font, but draws a rule on top of the content. In older printing it was difficult (or, rather, it demanded some work) to draw horizontal lines.

In the case of complex conjugation, one shall be a bit careful. In general, when putting accents over *i* the dot is removed, as in \hat{i} . By using \widebar this is also the case. The instance top:dot of mathaccent is defined with option i=. It prevents the dot from being removed. The predefined accent \conjugate uses this.

```
\startformula
\widebar{\cos(\theta) + \ii \sin(\theta)}
= \cos(\theta) - \ii \sin(\theta)
\breakhere
\conjugate{\cos(\theta) + \ii \sin(\theta)}
= \cos(\theta) - \ii \sin(\theta)
\stopformula
```

 $\overline{\cos(\theta) + i\sin(\theta)} = \cos(\theta) - i\sin(\theta)$ $\overline{\cos(\theta) + i\sin(\theta)} = \cos(\theta) - i\sin(\theta)$

GETTING STARTED BUILDING BLOCKS **KEYWORDS INLINE MATH DISPLAYED MATH** EQUATION LABELS **ENUNCIATIONS ILLUSTRATIONS** MATH FONTS **MEANINGFUL MATH** MISCELLANEOUS UNICODE SYMBOLS SETUPS **BIBLIOGRAPHY**

INTRODUCTION

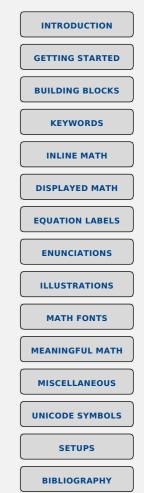
One could even consider alternative notations for conjugate, for example the asterisk.

Let us also add that a few Opentype fonts come with flattened accents, see the examples in Intermezzo 2.9. Lucida Bright Math does not have flattened accents, so the two hats look the same. Stix Two Math and Cambria Math have flattened accents. The effect is subtle, but the hat on the uppercase W has a slightly smaller height than the one on the lowercase w. This detail can sometimes save us from lines to spread. In fonts where this is not supported, we can fake it with the flattenaccents tweak. This tweak is enabled in T_FXGyre Bonum Math.

 $\hat{w} + W$ Lucida

 $\hat{w} + \hat{W}$

Lucida (tweaked)


Stix Two \hat{w} +

Bonum (tweaked)

Intermezzo 2.9

2.10 Stackers and annotations

Stackers and extensibles are often used to add decorative elements above or below other content. Fortunately, a variety of these elements have already been predefined in ConTEXt. We start by discussing a type of stackers where we decorate formula snippets on the top or bottom with some brace, bracket or similar. These are a bit similar to accents, but their purpose is slightly different, and they are often a bit more clumsy. In Intermezzos 2.10, 2.11 and 2.12 we list some examples.

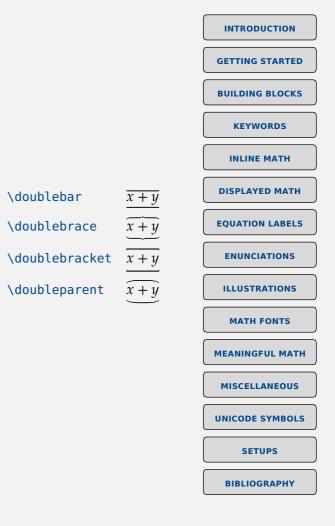
\overleftrightarrow	$\overleftarrow{x+y}$
\overleftarrow	$\overleftarrow{x+y}$
\overtwoheadleftarrow	$\frac{x}{x+y}$
\overlefttailarrow	$\overleftarrow{x+y}$
\overlefttailarrow	$\overleftarrow{x+y}$
\overlefthookarrow	$\overleftarrow{x+y}$
\overleftharpoondown	$\overleftarrow{x+y}$
\overleftharpoonup	$\frac{x}{x+y}$
\overLeftarrow	$\overleftarrow{x+y}$
\overLeftbararrow	$\overleftarrow{x+y}$
\overLeftrightarrow	$\overleftarrow{x+y}$

\overrightarrow	$\overrightarrow{x+y}$
\overtwoheadrightarrow	$\overrightarrow{x+y}$
\overrighttailarrow	$\overrightarrow{x+y}$
\overrighttailarrow	$\overrightarrow{x+y}$
\overrighthookarrow	$\overrightarrow{x+y}$
\overrightharpoondown	$\overrightarrow{x+y}$
\overrightharpoonup	$\overrightarrow{x+y}$
\overRightarrow	$\overrightarrow{\overline{x+y}}$
\overRightbararrow	$\overrightarrow{x+y}$

Intermezzo 2.10

BUILDING BLOCKS
KEYWORDS
INLINE MATH
DISPLAYED MATH
EQUATION LABELS
ENUNCIATIONS
ILLUSTRATIONS
MATH FONTS
MEANINGFUL MATH
MISCELLANEOUS
UNICODE SYMBOLS
SETUPS
BIBLIOGRAPHY

INTRODUCTION


GETTING STARTED

INTRODUCTION	
GETTING STARTED	
BUILDING BLOCKS	

Intermezzo 2.11						
	\underLeftrightarrow	$x + y \iff$				
	\underLeftbartarrow	x + y	\underRightbararrow	$x + y \longrightarrow$		
	\underLeftarrow	$\underset{\longleftarrow}{\overset{x+y}{\longleftarrow}}$	\underRightarrow	$x + y \longrightarrow$		
	\underleftharpoonup	$\underbrace{x+y}$	\underrightharpoonup	x + y		
	\underleftharpoondown	$\underbrace{x+y}{}$	\underrightharpoondown	$\underline{x+y}$		
	\underlefthookarrow	x + y	\underrighthookarrow	$x + y \longrightarrow$		
	\underlefttailarrow	$\begin{array}{c} x+y \\ \leftarrow \end{array}$	\underrighttailarrow	$\xrightarrow{x+y}$		
	\underlefttailarrow	$\begin{array}{c} x+y \\ \longleftarrow \end{array}$	\underrighttailarrow	$\xrightarrow{x+y}$		
	\undertwoheadleftarrow	$\frac{x+y}{x-x}$	\undertwoheadrightarrow	$x + y \longrightarrow$		
	\underleftarrow	$\begin{array}{c} x + y \\ \leftarrow \end{array}$	\underrightarrow	$\xrightarrow{x+y}$		
	\underleftrightarrow	$\xrightarrow{x+y}$				

BUILDING BLOCKS
KEYWORDS
INLINE MATH
DISPLAYED MATH
EQUATION LABELS
ENUNCIATIONS
ILLUSTRATIONS
MATH FONTS
MEANINGFUL MATH
MISCELLANEOUS
UNICODE SYMBOLS
SETUPS
BIBLIOGRAPHY

GETTING ST

	_
nderbracket	γ -

x + y

```
\underbrace x + y
```

\underbar

```
\underbracket x + y
```

```
\underparent
            x + y
```


INTRODUCTION **GETTING STARTED BUILDING BLOCKS** $\widehat{x} + \widehat{xy} + \widehat{x+y}, \quad \widehat{x} + \widehat{xy} + \widehat{x+y}$ $\widehat{x} + \widehat{xy} + \widehat{x} + \widehat{y}, \quad \widehat{x} + \widehat{xy} + \widehat{x} + \widehat{y}$ **KEYWORDS** T_EXGyre Bonum $\widehat{x} + \widehat{xy} + \widehat{x+y}, \quad \widehat{x} + \widehat{xy} + \widehat{x+y} \quad \widehat{x} + \widehat{xy} + \widehat{x+y}, \quad \widehat{x} + \widehat{xy} + \widehat{x+y}$ **INLINE MATH** Dejavu Math **DISPLAYED MATH** $\widehat{x} + \widehat{xy} + \widehat{x+y}, \quad \widehat{x} + \widehat{xy} + \widehat{x+y}$ **EQUATION LABELS** Garamond Math $\widehat{x} + \widehat{xy} + \widehat{x+y}, \quad \widehat{x} + \widehat{xy} + \widehat{x+y}$ **ENUNCIATIONS** Latin Modern Math **ILLUSTRATIONS** $\widehat{x} + \widehat{xy} + \widehat{x} + \widehat{y}, \quad \widehat{x} + \widehat{xy} + \widehat{x} + \widehat{y}$ MATH FONTS T_EXGyre Pagella Math **MEANINGFUL MATH** $\widehat{x} + \widehat{xy} + \widehat{x+y}, \quad \widehat{x} + \widehat{xy} + \widehat{x+y}$ MISCELLANEOUS T_FXGyre Termes Math Intermezzo 2.13 UNICODE SYMBOLS SETUPS

Antykwa Cambria Math $\widehat{x} + \widehat{xy} + \widehat{x+y}, \quad \widehat{x} + \widehat{xy} + \widehat{x+y}$ **Erewhon Math** $\widehat{x} + \widehat{xy} + \widehat{x+y}, \quad \widehat{x} + \widehat{xy} + \widehat{x+y}$ Kepler Math $\widehat{x} + \widehat{xy} + \widehat{x+y}, \quad \widehat{x} + \widehat{xy} + \widehat{x+y}$ Libertinus Math $\widehat{x} + \widehat{xy} + \widehat{x+y}, \quad \widehat{x} + \widehat{xy} + \widehat{x+y}$ Stix Two Math

\startformula

= mx + ny

\stopformula

\startformula

= mx + ny

\stopformula

\startformula

+

+

+

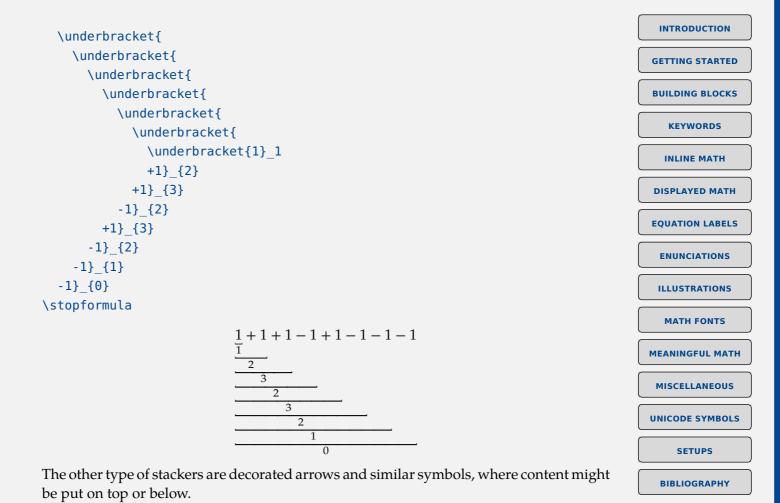
INTRODUCTION The under and over stackers are defined with mathlimits=yes, which means that we can put text or math above or below them. Thus, we can for example do **GETTING STARTED BUILDING BLOCKS KEYWORDS INLINE MATH DISPLAYED MATH** $\underbrace{x + x + \dots + x}_{=mx} + \underbrace{y + y + \dots + y}_{=ny} = mx + ny$ **EQUATION LABELS** As in many other situations, we can add struts to enforce a consistent vertical placement. **ENUNCIATIONS ILLUSTRATIONS** MATH FONTS **MEANINGFUL MATH** $\underbrace{x + x + \dots + x}_{=mx} + \underbrace{y + y + \dots + y}_{=ny} = mx + ny$ MISCELLANEOUS UNICODE SYMBOLS As an alternative, it is possible to use the mathannotation mechanism. SETUPS \mathannotation[bottom={= mx}]{\underbrace{x + x + \ldots + x}} **BIBLIOGRAPHY**

75

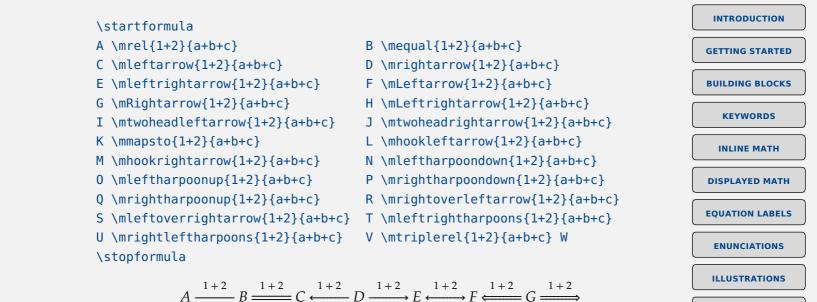
\mathannotation[bottom={= ny}]{\underbrace{y + y + \ldots + y}}
= mx + ny
\stopformula

$$\underbrace{x + x + \dots + x}_{= mx} + \underbrace{y + y + \dots + y}_{= ny} = mx + ny$$

These over- and underdecorations are built with a base glyph, variants or an extensible recipe (if it exist), depending on the size of the content. This means that the size jumps in discrete steps, so the width might not fit the content perfectly. Let us look at one example. We locally show the glyphs for more clarity.


```
\startformula\showglyphs
\overparent[shrink=no]{x} + \overparent[shrink=no]{xy} +
\overparent[shrink=no]{x + y}\mtp{,}
\overparent{x} + \overparent{xy} +
\overparent{x + y}
\stopformula
```

$\widehat{x} + \widehat{xy} + \widehat{x + y}, \quad \widehat{x} + \widehat{xy} + \widehat{x + y}$


Note that the parentheses in the right formula are scaled just slightly. In fact, they are not (yet) scaled if the extensible recipe is active (as it is for the parentheses on top of x + y). In Intermezzo 2.13 we show this example in some of the other fonts.

Be kind to your readers; do not overuse this type of constructions.

```
\startformula
\underbracket{
```


77

 $A \xrightarrow{1+2}_{a+b+c} B \xrightarrow{1+2}_{a+b+c} C \xleftarrow{1+2}_{a+b+c} D \xrightarrow{1+2}_{a+b+c} E \xleftarrow{1+2}_{a+b+c} F \xleftarrow{1+2}_{a+b+c} G \xrightarrow{1+2}_{a+b+c}$ $H \xleftarrow{1+2}_{a+b+c} I \xrightarrow{1+2}_{a+b+c} J \xrightarrow{1+2}_{a+b+c} K \xleftarrow{1+2}_{a+b+c} L \xleftarrow{1+2}_{a+b+c} M \xleftarrow{1+2}_{a+b+c} N \xrightarrow{1+2}_{a+b+c} O \xrightarrow{1+2}_{a+b+c}$ $P \xrightarrow{1+2}_{a+b+c} Q \xrightarrow{1+2}_{a+b+c} R \xleftarrow{1+2}_{a+b+c} S \xleftarrow{1+2}_{a+b+c} T \xrightarrow{1+2}_{a+b+c} U \xrightarrow{1+2}_{a+b+c} V \xrightarrow{1+2}_{a+b+c} W$

Some fonts lack some of these. In Stix Two Math we get the following.

 $A \xrightarrow{1+2}_{a+b+c} B \xrightarrow{1+2}_{a+b+c} C \xleftarrow{1+2}_{a+b+c} D \xrightarrow{1+2}_{a+b+c} E \xleftarrow{1+2}_{a+b+c} F \xleftarrow{1+2}_{a+b+c} G \xrightarrow{1+2}_{a+b+c}$

MATH FONTS

MEANINGFUL MATH

MISCELLANEOUS

UNICODE SYMBOLS

SETUPS

 $H \xleftarrow{1+2}_{a+b+c} I \xleftarrow{1+2}_{a+b+c} J \xrightarrow{1+2}_{a+b+c} K \xleftarrow{1+2}_{a+b+c} L \xleftarrow{1+2}_{a+b+c} M \xleftarrow{1+2}_{a+b+c} N \xleftarrow{1+2}_{a+b+c} M \xleftarrow{$

Additionally, there are variants that begin with "t" instead of "m", that use text mode for the content above or below the extensible symbol. Below we provide two common ways to indicate that a function is an injection.

\startformula

f \colon A	<pre>\trightarrow{injection}</pre>	B \mtp{,}
f ∖colon A	\hookrightarrow	B \mtp{,}

f \colon A \mhookrightarrow[minwidth=2\emwidth] B \mtp{.}
\stopformula

$$f: A \xrightarrow{\text{injection}} B, \quad f: A \hookrightarrow B, \quad f: A \longrightarrow B.$$

These extensible arrows are defined as stackers, but we can create our own as well. For example, we can put a small diamond symbol (\diamond) (Unicode slot $0 \times 022C4$) on top of something by defining a new type of stacker called MyStacker. While the predefined arrows come out as relations with corresponding spacing, our new stacker might not be well-suited for this class. Relations have too much space around them, while the usual spacing around characters might be too small. We can instead make use of the fraction class, which adds some additional spacing around our constructions (though not as much as for the relation class). Note that the choice of math class also might affect the possibility of line breaks.

INTRODUCTION **GETTING STARTED** BUILDING BLOCKS **KEYWORDS INLINE MATH DISPLAYED MATH EQUATION LABELS ENUNCIATIONS ILLUSTRATIONS** MATH FONTS **MEANINGFUL MATH** MISCELLANEOUS

UNICODE SYMBOLS

SETUPS

```
INTRODUCTION
\definemathstackers
  [MyStacker]
                                                                                 GETTING STARTED
  [both]
                                                                                 BUILDING BLOCKS
  [mathclass=fraction]
KEYWORDS
comparison, we also add an example that uses the predefined stacker top.
                                                                                   INLINE MATH
\startformula
                                                                                 DISPLAYED MATH
  A \mathover[MyStacker]{"22C4}{B} C \mathover[top]{"22C4}{D} E
\stopformula
                                                                                 EQUATION LABELS
                                  A B CDE
                                                                                  ENUNCIATIONS
If we want to use this type of construction many times, it is convenient to define an
                                                                                  ILLUSTRATIONS
instance.
                                                                                   MATH FONTS
\definemathover
  [MyStacker] % stacker
                                                                                 MEANINGFUL MATH
  [Diamonded] % name
                                                                                  MISCELLANEOUS
  ["22C4] % unicode slot
                                                                                 UNICODE SYMBOLS
We can now use \Diamonded to put a small diamond on top of something.
\startformula
                                                                                     SETUPS
  Diamonded{x} Diamonded{y} + Diamonded{A} =
                                                                                  BIBLIOGRAPHY
```

 $Diamonded{1 + 11} + Diamonded{sum {k=1}}$

$$\overset{\diamond}{x} \overset{\diamond}{y} + \overset{\diamond}{A} = 1 \overset{\diamond}{+} 11 + \sum_{k=1}^{\diamond}$$

Observe that the diamonds we put on the characters do not obey the anchoring that accents use, but are centered. This is more easily seen if we show some bounding boxes.

$$\overset{\diamond}{x}\overset{\diamond}{y} + \overset{\diamond}{A} = 1 + 11 + \sum_{k=1}^{\diamond}$$

There is also \definemathunder for stacking below and \definemathdouble to place content both above and below. We give an example of the latter, where we use the small star that sits in Unicode slot 0x022C6.

\definemathdouble

[MyStacker] % stacker [Adorned] % name ["22C4] % slot above ["22C6] % slot below

We can now use \Adorned.

```
\startformula
  \Adorned{x} \Adorned{y} + \Adorned{A} =
  \Adorned{1+11} + \Adorned{\sum_a}
  \stopformula
```

 $\overset{\diamond}{\underset{\star}{x}} \overset{\diamond}{\underset{\star}{y}} + \overset{\diamond}{\underset{\star}{A}} = 1 \overset{\diamond}{\underset{\star}{+}} 11 + \overset{\diamond}{\underset{\star}{\sum}_{a}}$

EQUATION LABELS

ENUNCIATIONS

INTRODUCTION

GETTING STARTED

BUILDING BLOCKS

KEYWORDS

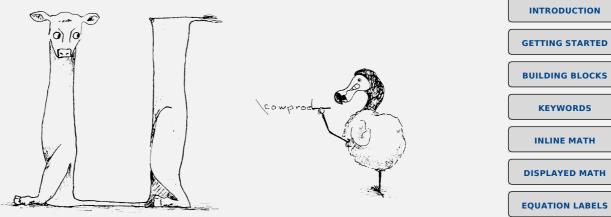
INLINE MATH

DISPLAYED MATH

ILLUSTRATIONS

MATH FONTS

MEANINGFUL MATH

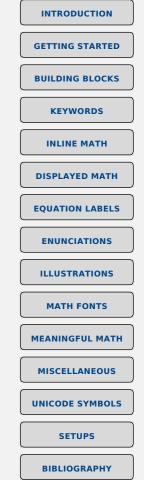

MISCELLANEOUS

UNICODE SYMBOLS

SETUPS

BIBLIOGRAPHY

2.11 Big operators



There are four groups of big operators defined in $ConT_EXt$: integrals, summations, products and operators. We start by listing the elements in each group.

\startformula

```
\int \iint \iiint \quad
\oint \oiint \oiiint \intc \ointc \aointc \aodownintc
\rectangularpoleintc \semicirclepoleintc \circlepoleoutsideintc
\circlepoleinsideintc \squareintc \quad
\sumint \barint \doublebarint \slashint \hookleftarrowint
\timesint \capint \cupint \upperint \lowerint
\stopformula
```


As you see, we do not get all of them in Latin Modern Math. With Stix Two Math we get

ſ∭∭∭ ∮∯∰∱∲∲∱∮∮∮∳ <u>≵</u>f<u></u>ff∱∮∮∮∫

\startformula
\sum \blackboardsum \modtwosum
\stopformula

 $\Sigma \Sigma \Sigma$

\startformula
\prod \coprod
\stopformula

ΠЦ

\startformula

\bigwedge \bigvee \bigcap \bigcup \bigodot \bigoplus \bigotimes \quad
\bigudot \biguplus \bigsqcap \bigsqcup \bigtimes \bigdoublewedge
\bigdoublevee \quad \leftouterjoin \rightouterjoin \fullouterjoin
\bigbottom \bigtop \bigsolidus \bigreversesolidus
\stopformula

$\texttt{AVOUO} \otimes \texttt{WHTLX} \times \texttt{M} \times \texttt{T}/\texttt{V}$

These operators can be typeset differently based on the group they belong to. For instance, the integral operator is typeset differently from the other operators by default due to the location of the limits.

BUILDING BLOCKS KEYWORDS INLINE MATH DISPLAYED MATH EQUATION LABELS ENUNCIATIONS ILLUSTRATIONS MATH FONTS

INTRODUCTION

GETTING STARTED

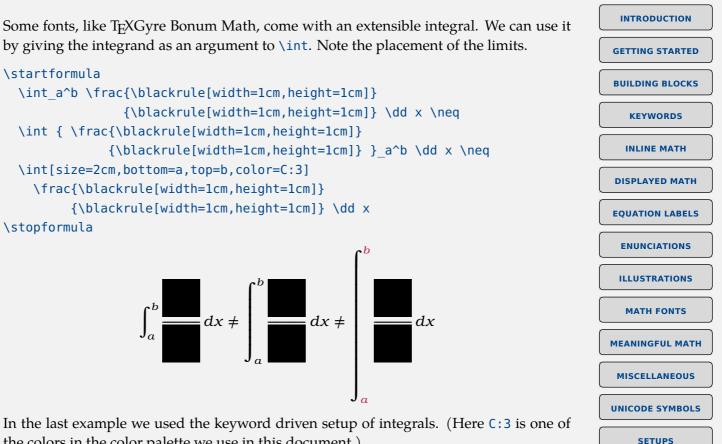
MEANINGFUL MATH

MISCELLANEOUS

UNICODE SYMBOLS

SETUPS

As you can see, all the big operators have their limits positioned to the right in inline formulas. In displayed formulas, the integral operator remains consistent with this convention, while the other operators have their limits positioned above and below. This layout makes sense since the different operators have similar heights. However, some people prefer to have the limits positioned below and above the integral sign in displayed formulas.


\setupmathoperators

[integrals]
[method=auto]

With this setup, the previous example looks like this.

$$\int_{0}^{1} f(x) \, dx \neq \sum_{k=1}^{n} a_{k} \neq \prod_{k=1}^{n} a_{k} \neq \bigoplus_{k=1}^{n} a_{k}$$
$$\int_{0}^{1} f(x) \, dx \neq \sum_{k=1}^{n} a_{k} \neq \prod_{k=1}^{n} a_{k} \neq \bigoplus_{k=1}^{n} a_{k}$$

INTRODUCTION
GETTING STARTED
BUILDING BLOCKS
KEYWORDS
INLINE MATH
DISPLAYED MATH
EQUATION LABELS
ENUNCIATIONS
ILLUSTRATIONS
MATH FONTS
MEANINGFUL MATH
MISCELLANEOUS
UNICODE SYMBOLS
SETUPS
BIBLIOGRAPHY

the colors in the color palette we use in this document.)

2.12 Radicals

Square roots are set with \sqrt or by raising to the power one-half. In the pre-digital time a surd sign \checkmark was often used, since it was then complicated to set the horizontal bar. To get a *n*th root you either give an extra argument to \sqrt or use \root .

```
\startformula 
 \sqrt{1 + x} = (1 + x)^{{frac{1}{2}} = \surd(1 + x)} 
 = \sqrt[rule=no]{(1 + x)} \breakhere 
 \root[n=n]{1 + x} = \root[n]{1 + x} = \sqrt[n]{1 + x} 
 = (1 + x)^{{1/n}}
```

\stopformula

$$\sqrt{1+x} = (1+x)^{\frac{1}{2}} = \sqrt{(1+x)} = \sqrt{(1+x)}$$
$$\sqrt[n]{1+x} = \sqrt[n]{1+x} = \sqrt[n]{1+x} = (1+x)^{1/n}$$

In Section 4.5, we will address the apparent inconsistency between the exponents $\frac{1}{2}$ and 1/n. When an equation contains multiple radicals, it may be preferable for them to have a consistent appearance. To achieve this, we can work with struts. We will use the following code.

```
\inf  \operatorname{sqrt}_e + \operatorname{sqrt}_f + \operatorname{sqrt}_g + \operatorname{sqrt}_h
```

Below we show the output it gives with different struts applied. We do set up the strut with

```
\setupmathradical
[sqrt]
```

INTRODUCTION
GETTING STARTED
BUILDING BLOCKS
KEYWORDS
INLINE MATH
DISPLAYED MATH
EQUATION LABELS
ENUNCIATIONS
ILLUSTRATIONS
MATH FONTS
MEANINGFUL MATH
MISCELLANEOUS
UNICODE SYMBOLS
SETUPS
BIBLIOGRAPHY

[strut=X]

where we let X be the value indicated below the formula (except for the first case where the key is not altered). We also use a helper to show the struts.

$\sqrt{\mathbf{k}} + \sqrt{\mathbf{k}} + \sqrt{\mathbf{k}} + \sqrt{\mathbf{k}}$	$\sqrt{k} + \sqrt{f} + \sqrt{g} + \sqrt{h}$	$\sqrt{e} + \sqrt{f} + \sqrt{g} + \sqrt{h}$	
default	ves	no	

$$\sqrt{p} + \sqrt{p} + \sqrt{p} + \sqrt{h} \qquad \sqrt{p} + \sqrt{p} + \sqrt{p} + \sqrt{h} \qquad \sqrt{p} + \sqrt{f} + \sqrt{g} + \sqrt{h}$$

math height depth

Another keyword that might come in handy is the depth. Let us look at an example

```
\startformula
  \sqrt{x} + \sqrt{y} + \sqrt{a_k^n}
  \stopformula
```

 $\sqrt{x} + \sqrt{y} + \sqrt{a_k^n}$

Observe how the size of the radical is adjusted based on the depth of the y. Similarly, the same size is applied to a_k^n , but since the k has a greater depth, the radical is shifted downwards. To avoid this, we can explicitly set the depth (0pt is not a valid option, none sets it to 1sp).

```
\startformula
  \sqrt[depth=none]{x} + \sqrt[depth=none]{y} +
  \sqrt[depth=none]{a k^n} = \sqrt[depth=10pt]{a k^n}
```

INLINE MATH

INTRODUCTION

GETTING STARTED

BUILDING BLOCKS

KEYWORDS

EQUATION LABELS

ENUNCIATIONS

ILLUSTRATIONS

MATH FONTS

MEANINGFUL MATH

MISCELLANEOUS

UNICODE SYMBOLS

SETUPS

$$\sqrt{x} + \sqrt{y} + \sqrt{a_k^n} = \sqrt{a_k^n}$$

If we plan on using square roots without any depth in multiple instances, it is a good practice to define a new instance.

```
\definemathradical
```

[Sqrt] [depth=none]

\startformula
 \Sqrt{x} + \Sqrt{y} + \Sqrt{a_k^n}
 \stopformula

 $\sqrt{x} + \sqrt{y} + \sqrt{a_k^n}$

Another way to enforce uniform typesetting in formulas with several radicals is to set height=\maxdimen and depth=\maxdimen.

```
\setupmathradical
[sqrt]
[depth=\maxdimen,
height=\maxdimen]
```

```
\startformula
  \sqrt{x} + \sqrt{y} + \sqrt{a_k^n}
```

INTRODUCTION **GETTING STARTED BUILDING BLOCKS KEYWORDS INLINE MATH DISPLAYED MATH EQUATION LABELS ENUNCIATIONS** ILLUSTRATIONS MATH FONTS **MEANINGFUL MATH MISCELLANEOUS UNICODE SYMBOLS**

BIBLIOGRAPHY

SETUPS

$$\sqrt{x} + \sqrt{y} + \sqrt{a_k^n}$$

There is also a parameter mindepth that gives the minimum amount of depth for a radical. Compare the left-hand and right-hand sides below, where mindepth is inactive for the lefthand side, while the (default) value .20\exheight is used for the right-hand side.

$$\sqrt{1+x}\sqrt{1-x} \neq \sqrt{1+x}\sqrt{1-x}$$

At a first glance the two versions might look the same. But in the left-hand side the $\sqrt{1-x}$ has no depth, while the plus sign in the $\sqrt{1+x}$ forces some depth, making the radicals differently aligned vertically. In the right-hand side the mindepth prevents this. Its value depends on the font.

Finally, to honor an anonymous Italian user at Stack Exchange, we show how to define a radical with a small hook.

```
\definemathradical
```

```
[italiansqrt]
[rule=yes,
   left="221A,
   right=\delimitedrightannuityshortuc,
   rightmargin=.05\emwidth]
```

```
\startformula
  \italiansgrt{1 + x} + \italiansgrt{\frac{1 + x}{1 - x}}
```

INTRODUCTION **GETTING STARTED** BUILDING BLOCKS **KEYWORDS INLINE MATH DISPLAYED MATH EQUATION LABELS ENUNCIATIONS ILLUSTRATIONS** MATH FONTS **MEANINGFUL MATH** MISCELLANEOUS UNICODE SYMBOLS SETUPS

$$\sqrt{1+x} + \sqrt{\frac{1+x}{1-x}}$$

2.13 Fractions

We can typeset fractions with the \frac macro. It takes two arguments, the numerator and the denominator.

\startformula

 $\frac{1 + \int rac{1}{x}}{1 - \int rac{1}{x^2}} = \int rac{x}{x - 1} \\stopformula$

$$\frac{1+\frac{1}{x}}{1-\frac{1}{x^2}} = \frac{x}{x-1}$$

This covers almost everything you need to know about fractions. However, if you want more details, keep reading. You'll likely use \frac most of the time, since it automatically adapts to the appropriate style in both displayed and inline formulas. But there are a few other options available, such as \dfrac, \tfrac, and \sfrac, which enforce display style math, text style math, and script style, respectively. Additionally, there's \vfrac, which can be thought of as a virgule fraction.

Vertical spacing in fractions is partly determined by struts. We'll demonstrate this using the following example, which sets different types of fractions in both display math and inline math.

 $frac{a}{b} = dfrac{a}{b} = tfrac{a}{b} = vfrac{a}{b}$

INTRODUCTION

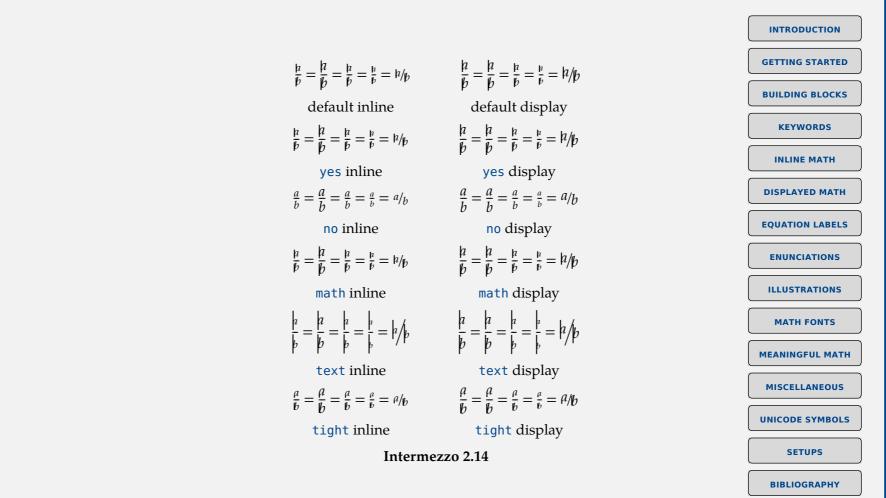
GETTING STARTED

BUILDING BLOCKS

EQUATION LABELS

ENUNCIATIONS

ILLUSTRATIONS


MATH FONTS

MEANINGFUL MATH

MISCELLANEOUS

```
UNICODE SYMBOLS
```

SETUPS

SETUPS

BIBLIOGRAPHY

indicated below each example. To guide you we show the struts as bars. The usage of struts is mainly for consistency. One can argue that the spacing between the fraction bar and the *g* in the following fraction is too big. But then one should also have in mind that there might be other fractions nearby. We show below a formula with one additional fraction, and different settings for the strut, for comparison. $\frac{f}{g} = \frac{u}{h} \qquad \frac{f}{g} = \frac{u}{h}$ default yes no math text tight It is also possible to configure the strut by giving an optional argument to \frac. MATH FONTS \startformula **MEANINGFUL MATH** \frac[strut=no]{f}{g} \stopformula MISCELLANEOUS UNICODE SYMBOLS There are some more options possible to give. Instead of having a tall nested fraction one can use a slash.

In Intermezzo 2.14 we show the output with \setupmathfractions[strut=X], where X is

\startformula

\dfrac
 [method=line,
 vfactor=0]
 { \left(1 + \frac{1}{x} \right) }
 { \left(1 - \frac{1}{x} \right) }
 =
 \frac{x + 1}{x - 1}
\stopformula

$$\left(1+\frac{1}{x}\right) / \left(1-\frac{1}{x}\right) = \frac{x+1}{x-1}$$

Note here the use of \dfrac instead of \frac. With \frac, the content of the inner fractions would be set in script style. Also compare with what we get if we use \vfrac.

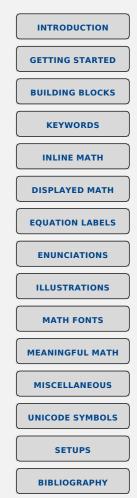
```
\startformula
  \vfrac
    { \left( 1 + \frac{1}{x} \right) }
    { \left( 1 - \frac{1}{x} \right) }
    =
    \frac{x + 1}{x - 1}
  \stopformula
```

 $\left(1+\frac{1}{x}\right) / \left(1-\frac{1}{x}\right) = \frac{x+1}{x-1}$

INTRODUCTION **GETTING STARTED BUILDING BLOCKS KEYWORDS INLINE MATH DISPLAYED MATH EQUATION LABELS ENUNCIATIONS ILLUSTRATIONS** MATH FONTS **MEANINGFUL MATH** MISCELLANEOUS UNICODE SYMBOLS SETUPS **BIBLIOGRAPHY**

It is not only the size that is different, the numerator is raised a bit and the denominator is lowered a bit. The vfrac is defined with method=horizontal, and is merely meant to be used for smaller numerical inline fractions, $7/_{12}$.

Next, we show how to modify the fraction bar. This should in general not be necessary, but it gives a good example of the flexibility of ConTEXt.

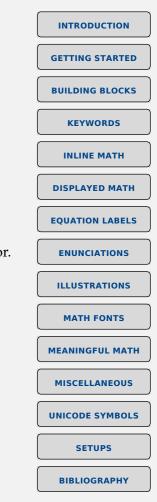

```
\startformula
  \frac
    [margin=0.25\mathemwidth]
    {1 + \frac{1}{x}}
    {1 - \frac{1}{x}}
    =
    \frac[color=C:3]{x + 1}{x - 1}
    \stopformula
```

$1 + \frac{1}{x}$	x + 1
$1-\frac{1}{x}$	$-\frac{1}{x-1}$

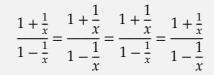
If you are to use a different style many times is of course better to define a new instance.

```
\definemathfraction
```

[widefrac] [rule=yes, rulethickness=2pt, symbolcolor=C:2, topcolor=C:3, bottomcolor=C:1, margin=0.5\mathemwidth, mathstyle=display]



\startformula
 \widefrac
 {1 + \frac{1}{x}}
 {1 - \frac{1}{x}}
=
 \frac{x + 1}{x - 1}
\stopformula

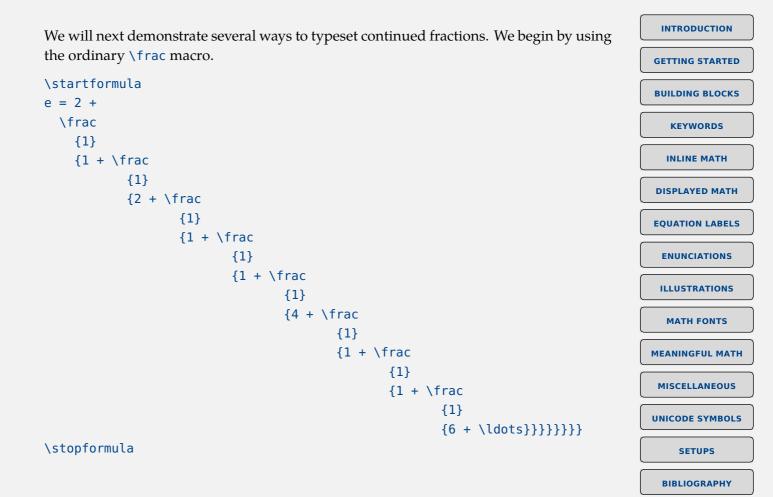

 $\frac{1+\frac{1}{x}}{1-\frac{1}{x}} = \frac{x+1}{x-1}$

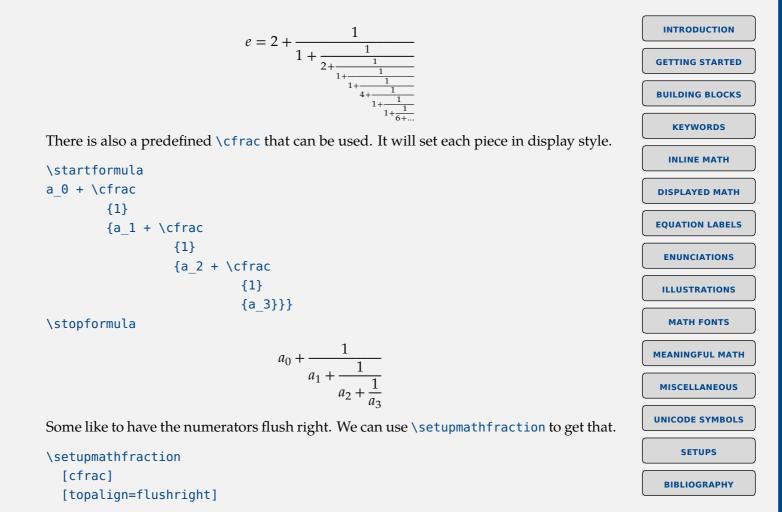
We have complete control of the math styles used in the numerator and the denominator.

```
\startformula
  \frac{1 + \frac{1}{x}}
    {1 - \frac{1}{x}}
=
  \frac[mathstyle=display]
    {1 + \frac{1}{x}}
    {1 - \frac{1}{x}}
=
  \frac[mathnumeratorstyle=display]
    {1 + \frac{1}{x}}
    {1 - \frac{1}{x}}
```


\frac[mathdenominatorstyle=display]
 {1 + \frac{1}{x}}
 {1 - \frac{1}{x}}
\stopformula

Let's explore a perhaps unexpected example. The binomial coefficients $\binom{n}{k}$ are actually defined using the fraction mechanism. We will next demonstrate how to use \definemathfraction to define a Christoffel symbol of the second kind. This symbol resembles a binomial coefficient, but it uses curly braces instead of parentheses.

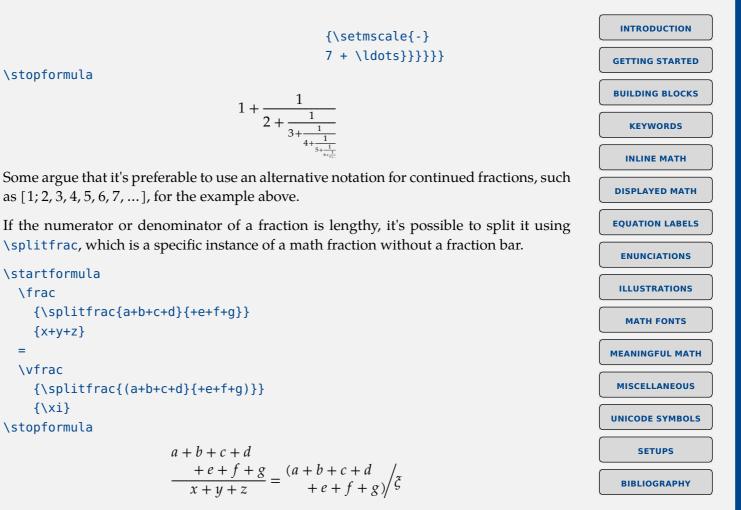

```
\definemathfraction
[Christoffel]
[left="7B, % unicode for {
  right="7D, % unicode for }
  rule=no] % no rule
```


\startformula

\Christoffel{l}{jk} = \Gamma^{l}_{jk}(x)
\stopformula

$$\begin{cases} l\\ jk \end{cases} = \Gamma_{jk}^l(x)$$

50
GETTING STARTED
BUILDING BLOCKS
KEYWORDS
INLINE MATH
DISPLAYED MATH
EQUATION LABELS
ENUNCIATIONS
ILLUSTRATIONS
MATH FONTS
MEANINGFUL MATH
MISCELLANEOUS
UNICODE SYMBOLS
SETUPS
BIBLIOGRAPHY



The same example as above now looks like this:

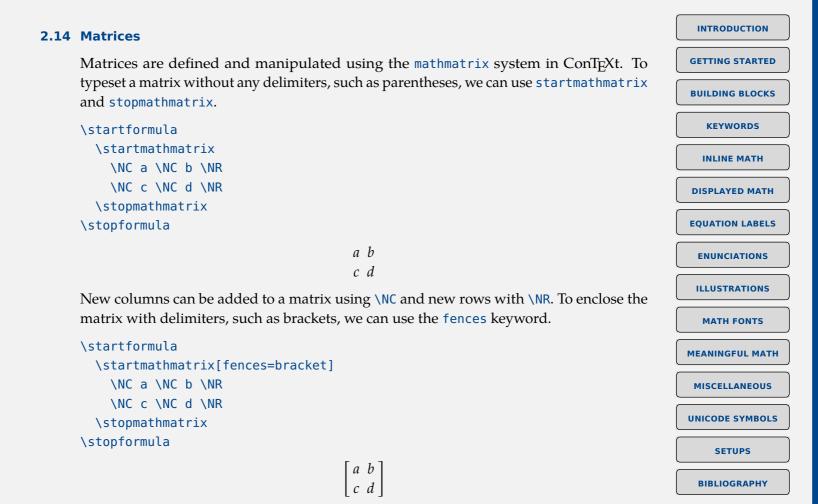
$$a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{a_3}}}$$

Some mathematicians prefer to decrease the size of fractions progressively. This can be accomplished by using \setmscale, which scales all math starting from a specific point. By giving it a minus sign as argument, it will use the factor specified in the \mathscalefactor macro, which is set to 0.7 by default.

INTRODUCTION **GETTING STARTED BUILDING BLOCKS KEYWORDS INLINE MATH DISPLAYED MATH EQUATION LABELS ENUNCIATIONS** ILLUSTRATIONS MATH FONTS **MEANINGFUL MATH MISCELLANEOUS** UNICODE SYMBOLS SETUPS **BIBLIOGRAPHY**

100

In the right-hand side of the example, we used \vfrac to slash the outer fraction. If we had used \frac, it would have appeared unbalanced due to the very small denominator. It is worth noting that \splitfrac produces slightly skewed fractions. This is achieved with the keys topalign=split:flushleft and bottomalign=split:flushright, which flush the fraction to the left and right, respectively. Additionally, a minimum extra distance can be added to skew the fraction further using the distance key (default is 1em). We demonstrate two extreme usages.


\startformula

```
\frac
  {\splitfrac[distance=3em]{a + b + c + d}{+ e + f + g}}
  {x + y + z}
=
  \frac
  {\splitfrac[distance=0em]{a + b + c + d}{+ e + f + g}}
  {x + y + z}
\stopformula
```

$$\frac{a+b+c+d}{+e+f+g} = \frac{a+b+c+d}{x+y+z}$$

We now have a good understanding of how to typeset fractions in ConT_EXt. Fractions set with a fraction bar tend to be tall. In Section 4.5 we will provide some general advice on how to typeset fractions in inline formulas, to make them blend with the rest of the text.

INTRODUCTION
GETTING STARTED
BUILDING BLOCKS
KEYWORDS
INLINE MATH
DISPLAYED MATH
EQUATION LABELS
ENUNCIATIONS
ILLUSTRATIONS
MATH FONTS
MEANINGFUL MATH
MISCELLANEOUS
UNICODE SYMBOLS
SETUPS
BIBLIOGRAPHY

A few instances of mathmatrix are predefined. For example we can get brackets by invoking the matrix:brackets instance. We do that by using the \startnamedmatrix and \stopnamedmatrix pair, or by using its simple command \bmatrix. In the first case we use \NC for new columns and \NR for new rows. In the second, we separate columns by commas and rows by semicolons.

```
\startformula
  \startnamedmatrix[matrix:brackets]
    \NC a \NC b \NR
    \NC c \NC d \NR
  \stopnamedmatrix
  =
    \bmatrix{a,b;c,d}
\stopformula
```

[a [c	b	=	a	<i>b</i>]
C C	d	_	С	d

We list other pre-defined instances, with their simple commands.

We show a small example of each case (here we use T_EXGyre Pagella Math that comes with all the different delimiters).

```
 \begin{vmatrix} 1 & 2 \\ 3 & 4 \end{vmatrix} + \begin{cases} 1 & 2 \\ 3 & 4 \end{vmatrix} + \begin{vmatrix} 1 & 2 \\ 3 & 4 \end{vmatrix} + \begin{vmatrix} 1 & 2 \\ 3 & 4 \end{vmatrix} + \begin{vmatrix} 1 & 2 \\ 3 & 4 \end{vmatrix} + \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} + \frac{1 & 2}{3 & 4} + \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} + \begin{vmatrix} 1 & 2 \\ 3 & 4 \end{vmatrix}
```

It is generally considered good style to avoid mixing different matrix types within a single document, unless there is a specific reason to do so. In linear algebra books, the bmatrix

103
INTRODUCTION
GETTING STARTED
BUILDING BLOCKS
KEYWORDS
INLINE MATH
DISPLAYED MATH
EQUATION LABELS
ENUNCIATIONS
ILLUSTRATIONS
MATH FONTS
MEANINGFUL MATH
MISCELLANEOUS
SETUPS
BIBLIOGRAPHY

Instance	Simple command
matrix:bars	vmatrix
<pre>matrix:braces matrix:brackets</pre>	bracematrix bmatrix
matrix:doublebar	vvmatrix
matrix:groups	gmatrix
<pre>matrix:none matrix:none</pre>	matrix
<pre>matrix:parentheses matrix:triplebar</pre>	pmatrix vvvmatrix
·	

or pmatrix environments are often used for matrices, while the vmatrix environment is typically used for determinants.

If needed, we can define new matrix types using \definemathmatrix. The only required argument is the name of the new matrix. Once the matrix type is defined, we can use it either with \startnamedmatrix and \stopnamedmatrix as shown earlier, or directly with the matrix name.

```
\definemathmatrix
[MyMatrix]
[fences=openbracket,
   simplecommand=MyMatrix]
```

\startformula
 \startMyMatrix
 \NC -1 \NC 2 \NR

EOUATION LABELS **ENUNCIATIONS ILLUSTRATIONS** MATH FONTS **MEANINGFUL MATH** MISCELLANEOUS UNICODE SYMBOLS SETUPS **BIBLIOGRAPHY**

\NC 4 \NC -5 \NR
\stopMyMatrix
\stopformula

 $\begin{bmatrix} -1 & 2 \\ 4 & -5 \end{bmatrix}$

We use \setupmathmatrix to configure MyMatrix. We can for example align the entries to the right instead of the default middle.

```
\setupmathmatrix
[MyMatrix]
[align={all:right}]
```

The {all:right} right-aligns all columns in the matrix. The example from above now looks like this.

 $\begin{bmatrix} -1 & 2 \\ 4 & -5 \end{bmatrix}$

You can also specify the alignment of each column individually by using the align key with a comma-separated list of alignments. For instance, align={all:right,1:left} will set all columns right-aligned except the first one, which will be left-aligned. Observe the order.

As another example, suppose we want to define a matrix type for column vectors with comma-separated entries. We can achieve this by adding an action key to the definition, in this case we set it to transpose (another handy one is negate).

\definemathmatrix

 BUILDING BLOCKS

 KEYWORDS

 INLINE MATH

 DISPLAYED MATH

 EQUATION LABELS

 ENUNCIATIONS

 ILLUSTRATIONS

 MATH FONTS

INTRODUCTION

GETTING STARTED

MEANINGFUL MATH

MISCELLANEOUS

UNICODE SYMBOLS

SETUPS

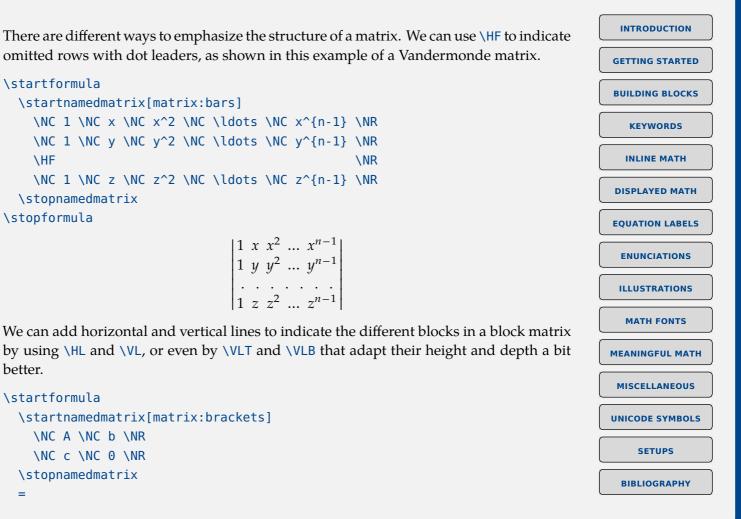
[colvec]
[fences=bracket,
 action=transpose,
 simplecommand=colvec]

\startformula
 \colvec{1,2,3} + \colvec{4,5,6} = \colvec{5,7,9}
\stopformula

 $\begin{bmatrix} 1\\2\\3 \end{bmatrix} + \begin{bmatrix} 4\\5\\6 \end{bmatrix} = \begin{bmatrix} 5\\7\\9 \end{bmatrix}$

One could question if that was really necessary. After all, we could have obtained the same output by separating with semicolons. In other cases, the action can save some typing.

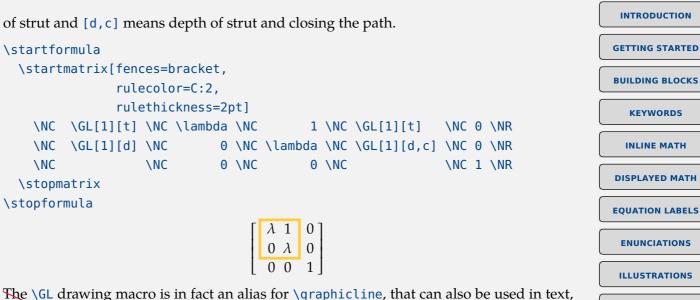
```
\startformula
```


```
\pmatrix{1,2;3,4;5,6}^T =
  \pmatrix[action=transpose]{1,2;3,4;5,6}
  \stopformula
```

(12)	Τ (1.2)
3 4	$= \begin{pmatrix} 1 & 3 & 5 \\ 2 & 4 & 6 \end{pmatrix}$
$\left(56\right)$	(246)

Note here how we have avoided to retype the entries of the matrix, transposed.

=

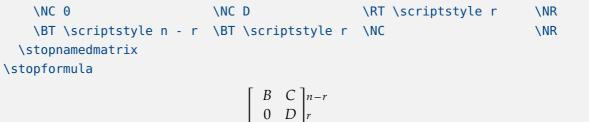

107

\startnamedmatrix[matrix:brackets]

\NC A \VL b \NR

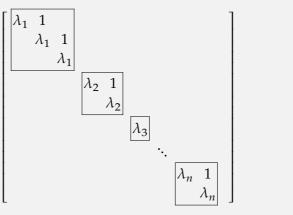
\HL \NC c \VL 0 \NR \stopnamedmatrix = \startnamedmatrix[matrix:brackets] \NC A \VLT b \NR \HL \NC c \VLB 0 \NR \stopnamedmatrix = \startnamedmatrix[matrix:brackets] NC A VLT[2,C:2] b NRHL[4,C:3]\NC c \VLB 0 \NR \stopnamedmatrix \stopformula $\begin{bmatrix} A & b \\ c & 0 \end{bmatrix} = \begin{bmatrix} A & b \\ c & 0 \end{bmatrix} = \begin{bmatrix} A & b \\ c & 0 \end{bmatrix} = \begin{bmatrix} A & b \\ c & 0 \end{bmatrix}$ UNICODE SYMBOLS SETUPS The \VLT and \VLB are in fact special examples of \GL, "graphics line", that can be used to draw rules to and from arbitrary places. Below the first argument [1] is an identifier, **BIBLIOGRAPHY** while the second tells where to anchor. So, for example [t] means top of strut, [d] depth

The \GL drawing macro is in fact an alias for \graphicline, that can also be used in text, where it works quite well for drawing lines from one point to another, as long as we stay on one page. You can probably guess how this was done in this paragraph, at least if you know that an [x] will align on the exheight. The last one also has an e, so we end with [x,e].


Labels to rows and columns can be added with the column types TT (top), BT (bottom), LT (left) and RT (right).

```
\startformula
  \startnamedmatrix[matrix:brackets]
    \NC B
                            \NC C
```

```
\RT \scriptstyle n - r \NR
```


UNICODE SYMBOLS

SETUPS

We continue with one more example, with inspiration from the Wikipedia page on Jordan normal form. It is one big matrix consisting of several so-called Jordan blocks. Each block is set inside a rectangle.

n-r r

INTRODUCTION **GETTING STARTED BUILDING BLOCKS KEYWORDS INLINE MATH DISPLAYED MATH EQUATION LABELS ENUNCIATIONS ILLUSTRATIONS** MATH FONTS **MEANINGFUL MATH** MISCELLANEOUS UNICODE SYMBOLS SETUPS **BIBLIOGRAPHY**

Here, one could in principle use HL and VL to build blocks, but instead we used math frames, with the mcframed with matrices inside. Thus, the building blocks were written

as

```
\startbuffer[block1]
\mcframed{
 \startmathmatrix
   \NC \lambda 1 \NC 1 \NC \NR
   \NC \NC \lambda 1 \NC 1 \NR
   \NC \NC \NC \lambda 1 \NR
 \stopmathmatrix
\stopbuffer
\startbuffer[block2]
\mcframed{
 \startmathmatrix
   \NC \lambda 2 \NC 1 \NR
   \NC \NC \lambda 2 \NR
 \stopmathmatrix
\stopbuffer
\startbuffer[block3]
\mcframed{
 \startmathmatrix
   \NC \lambda 3 \NR
 \stopmathmatrix
```

INTRODUCTION **GETTING STARTED BUILDING BLOCKS KEYWORDS INLINE MATH DISPLAYED MATH EQUATION LABELS ENUNCIATIONS** ILLUSTRATIONS MATH FONTS **MEANINGFUL MATH** MISCELLANEOUS UNICODE SYMBOLS SETUPS **BIBLIOGRAPHY**

get nested.

\startbuffer[rmat]

\bmatrix{0, 5; 6, 7}

```
INTRODUCTION
\stopbuffer
                                                                                          GETTING STARTED
\startbuffer[block4]
                                                                                          BUILDING BLOCKS
\mcframed{
  \startmathmatrix
                                                                                            KEYWORDS
    NC \ n \ NC 1
                                    \NR
    \NC
                   \NC \lambda n \NR
                                                                                            INLINE MATH
  \stopmathmatrix
                                                                                          DISPLAYED MATH
\stopbuffer
                                                                                          EQUATION LABELS
Once this was done, we made the bigger matrix by calling these buffers.
                                                                                           ENUNCIATIONS
\startformula
  \bmatrix{\getbuffer[block1], , , ;
                                                                                           ILLUSTRATIONS
             ,\getbuffer[block2], , , ;
             , ,\getbuffer[block3], , ;
                                                                                            MATH FONTS
             , , , \ddots, , ;
                                                                                         MEANINGFUL MATH
             , , , , \getbuffer[block4]}
\stopformula
                                                                                           MISCELLANEOUS
This way of working with buffers is very convenient and it enforces some structure, that
                                                                                          UNICODE SYMBOLS
leads to improved readability of the code. We show one more example, where the matrices
```

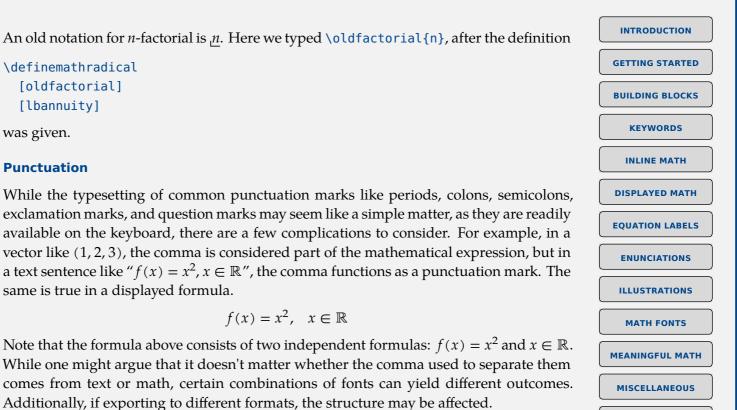
SETUPS

```
INTRODUCTION
\stopbuffer
                                                                                              GETTING STARTED
\startformula
                                                                                              BUILDING BLOCKS
  \bmatrix{1, 2; 3, 4}
  \otimes
                                                                                                KEYWORDS
  \getbuffer[rmat]
  =
                                                                                               INLINE MATH
  \bmatrix
                                                                                              DISPLAYED MATH
       1 \getbuffer[rmat], 2 \getbuffer[rmat];
                                                                                              EQUATION LABELS
       3 \getbuffer[rmat], 4 \getbuffer[rmat]
    }
                                                                                               ENUNCIATIONS
\stopformula
                                                                                              ILLUSTRATIONS
```

$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \otimes \begin{bmatrix} 0 & 5 \\ 6 & 7 \end{bmatrix} = \begin{bmatrix} 1 \begin{bmatrix} 0 & 5 \\ 6 & 7 \end{bmatrix} 2 \begin{bmatrix} 0 & 5 \\ 6 & 7 \end{bmatrix} \\ 3 \begin{bmatrix} 0 & 5 \\ 6 & 7 \end{bmatrix} 4 \begin{bmatrix} 0 & 5 \\ 6 & 7 \end{bmatrix} \end{bmatrix}$

2.15 Factorials

One usually uses the notation $n! = \prod_{k=1}^{n} k$ (we only type the ! where we want it). If one has a product of two factorials, n! m! the situation can benefit from a small space. On the other hand, for double factorials, n!! one does not want space between the exclamation marks. This is solved by giving the factorial (well, the exclamation mark) its own atom class.


MATH FONTS

MEANINGFUL MATH

MISCELLANEOUS

UNICODE SYMBOLS

SETUPS

UNICODE SYMBOLS

SETUPS

BIBLIOGRAPHY

Another question to consider is how much space should follow the comma in the displayed formula. Upon examining various TFX documents, we've observed that the space after the comma is typically either one quad or two quads.

 $f(x) = x^2, x \in \mathbb{R}$

\startformula

\definemathradical [oldfactorial]

same is true in a displayed formula.

[lbannuity]

was given.

2.16 Punctuation

114

f(x) = x^2,\quad x \in \reals \breakhere
f(x) = x^2,\qquad x \in \reals
\stopformula

 $f(x) = x^2, \quad x \in \mathbb{R}$ $f(x) = x^2, \quad x \in \mathbb{R}$

This is perfectly fine, and the most important thing to have in mind is to be consistent, but one should be aware that the commas in the formulas above are math commas, i.e., set with the math font. In our first displayed formula above we used \mtp{,} (mtp as in math text punctuation) to typeset the comma.

```
\startformula
  f(x) = x^2\mtp{,} x \in \reals
\stopformula
```

The comma is then taken from the text font. Note that we do not add a \quad or \quad. The $mtp{,}$ will result in a comma that has class textpunctuation, and the space between this class and the ordinary class (that the following *x* belongs to) is configured to be \mathinterwordmuskip, which by default is defined as 18mu, a quad. We quote [Lan61] (translated into English) where the choice of a quad is supported:

"A quad—nothing less, but also nothing more—is set between all independent formulas, independent of their length, height or character."

Instead of using a comma to separate formulas with conditions, some prefer to put the condition in parentheses. It is important to maintain consistency in the spacing between

```
INTRODUCTION
GETTING STARTED
BUILDING BLOCKS
   KEYWORDS
  INLINE MATH
DISPLAYED MATH
EOUATION LABELS
 ENUNCIATIONS
 ILLUSTRATIONS
  MATH FONTS
MEANINGFUL MATH
 MISCELLANEOUS
UNICODE SYMBOLS
    SETUPS
 BIBLIOGRAPHY
```

the main formula and the condition. One option is to use $mtp{}$ to add the space, while another is to use quad.

```
\startformula
  f(x) = x^2 \mtp{} (x\in\reals)
\stopformula
```

```
f(x) = x^2 \quad (x \in \mathbb{R})
```

Default punctuation varies depending on the context and language. We first show how common punctuation marks look by default in ConT_EXt.

```
\startformula
   3.14 \mtp{} 3,14 \mtp{} (a,b) \mtp{} (a;b) \breakhere
   3. 14 \mtp{} 3, 14 \mtp{} (a, b) \mtp{} (a; b)
\stopformula
```

```
3.14 3,14 (a, b) (a; b)
3.14 3,14 (a, b) (a; b)
```

As you can see, the spacing in the input did not have any effect. After the period, we get no space, while we get a small space after the comma and the semicolon. Punctuation usage can vary by context and language, with some languages using a comma instead of a period as the decimal separator. There are different ways to configure. We will first show a few different setups using the autopunctuation key, which is the oldest mechanism. The example code is exactly the same as above.

\setupmathematics

DISPLAYED MATH

EOUATION LABELS

ENUNCIATIONS

ILLUSTRATIONS

MATH FONTS

MEANINGFUL MATH

MISCELLANEOUS

UNICODE SYMBOLS

SETUPS

BIBLIOGRAPHY

Our second method is to use the autospacing key. The colon is used in different meanings in mathematics, and the spacing around it should be different. When used for proportions there is an equal amount of spacing on each side, 1 : 2. When used in function constructions, the macro \colon is used to get less spacing to the left of the colon, $f: \mathbb{R} \to \mathbb{R}$. We will use the following snippet.

 $3.14 \quad 3.14 \quad (a,b) \quad (a;b)$

 $3.14 \quad 3,14 \quad (a,b) \quad (a;b)$

 $3.14 \quad 3.14 \quad (a,b) \quad (a;b)$

 $3.14 \quad 3.14 \quad (a,b) \quad (a;b)$

```
\startformula
```

[autopunctuation=all]

[autopunctuation={comma,semicolon}]

\setupmathematics

```
f : \reals \to \reals \quad f \colon \reals \to \reals \breakhere
f: \reals \to \reals \quad f\colon \reals \to \reals
\stopformula
```

Observe the different spacing around the colons in the code. By default that difference does not have an influence.

 $f: \mathbb{R} \to \mathbb{R} \quad f: \mathbb{R} \to \mathbb{R}$ $f: \mathbb{R} \to \mathbb{R} \quad f: \mathbb{R} \to \mathbb{R}$

With autospacing set to yes the spacing will change the output.

INTRODUCTION \setupmathematics [autospacing=yes] **GETTING STARTED** $f:\mathbb{R}\to\mathbb{R}\quad f:\mathbb{R}\to\mathbb{R}$ BUILDING BLOCKS $f: \mathbb{R} \to \mathbb{R} \quad f: \mathbb{R} \to \mathbb{R}$ **KEYWORDS** Finally, we show different ways to convert decimal periods and decimal commas in numbers with help of the autonumbers key. We use the following snippet. **INLINE MATH** \im{1,222,333.44} \par **DISPLAYED MATH** \im{1.222.333,44} \par \im{1, 222, 333. 44} \par **EQUATION LABELS** \im{111 222} \par **ENUNCIATIONS** $\lim\{(1.5, 1.5)\}$ \par $\lim\{(1.5, 1.5)\}$ \par **ILLUSTRATIONS** $\lim\{(1,5;1,5)\}$ MATH FONTS Take a close look at Intermezzo 2.15 at the different outputs we get, depending on they value of autonumbers. **MEANINGFUL MATH** 2.17 Text MISCELLANEOUS

We have seen earlier that while \mathrm switches to roman (upright) in the math font, one can use \mathtexttf as a style in order to get text from the text font. To use text inside formulas, we use the \mtext macro.

```
\startformula
\mtext{Like this: } a^2 + b^2 = c^2
```

UNICODE SYMBOLS

SETUPS

INTRODUCTION

GETTING STARTED

BIBLIOGRAPHY

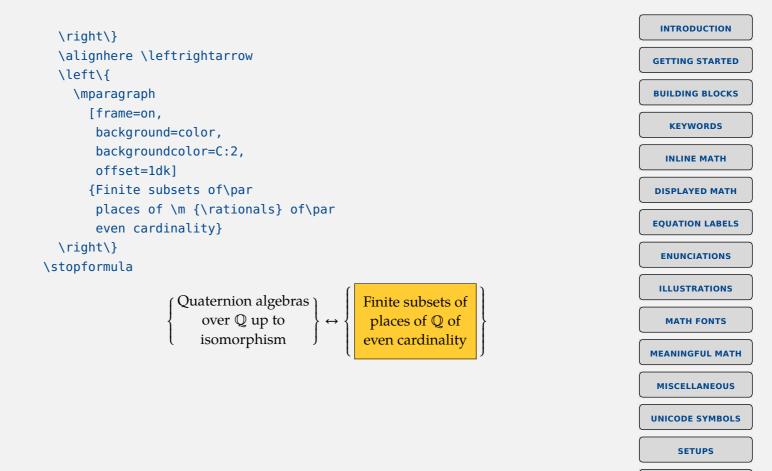
1, 222, 333.44 1,222,333.44 1,222,333.44 1,222,333.44 **BUILDING BLOCKS** 1.222.333,44 1.222.333,44 1,222,333.44 1.222.333 44 **KEYWORDS** 1, 222, 333.44 1, 222, 333.44 1, 222, 333, 44 1, 222, 333.44 111222 111 222 111 222 111 222 **INLINE MATH** (1.5, 1.5) (1.5, 1.5) (1, 5.1, 5) (1.5, 1.5)(1.5, 1.5) (1.5, 1.5) (1,5, 1,5) (1.5, 1.5)**DISPLAYED MATH** (1,5;1,5) (1,5;1,5) (1.5;1.5) (1.5;1.5)**EQUATION LABELS** autonumbers=no autonumbers=1 autonumbers=2 autonumbers=3 **ENUNCIATIONS** 1 222 333,44 1.222.333 44 1,222,333 44 1,222,333 44 1 222 333.44 1 222 333,44 **ILLUSTRATIONS** 1 222 333,44 1.222.333 44 1,222,333 44 111 222 111 222 111 222 MATH FONTS (1,51,5) (15.15) (15,15) **MEANINGFUL MATH** $(1,5 \ 1,5) \qquad (15.15) \qquad (15,15)$ (15; 15) (1.5; 1.5) (1.5; 1.5)MISCELLANEOUS autonumbers=4 autonumbers=5 autonumbers=6 UNICODE SYMBOLS Intermezzo 2.15 SETUPS

\breakhere
n = \underbrace{1 + 1 + \ldots + 1}_{n \mtext{ terms}}
\stopformula

Like this:
$$a^2 + b^2 = c^2$$

 $n = \underbrace{1 + 1 + \dots + 1}_{n \text{ terms}}$

```
\startformula
1 + 2 = 3
\breakhere
\texthere[left]{and}
4 + 5 + 6 = 7 + 8
\stopformula
```


1 + 2 = 3

4+5+6=7+8

and

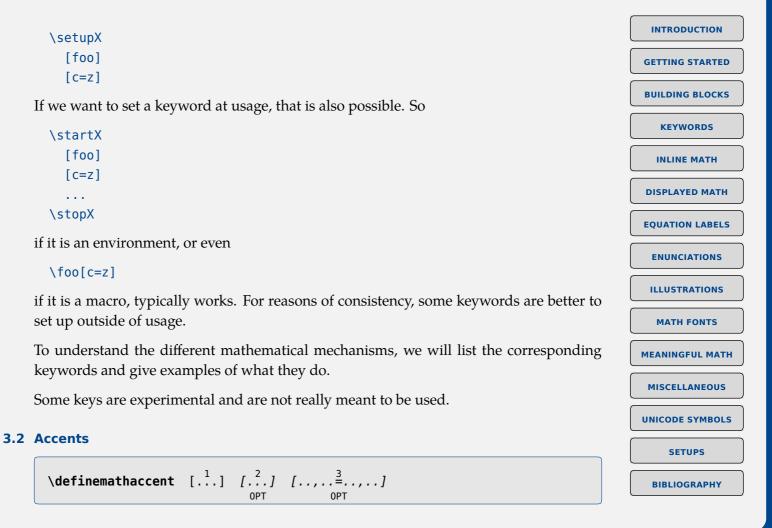
We show one more example where we have used \mparagraph.

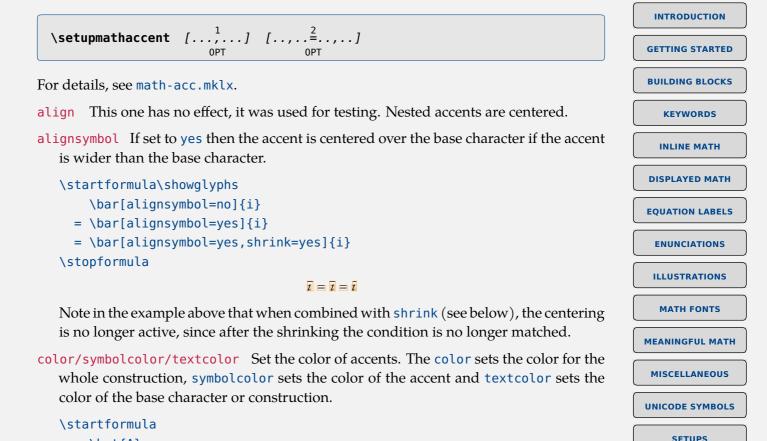
```
\startformula
  \left\{
    \mparagraph
    {Quaternion algebras\par
    over \m {\rationals} up to\par
    isomorphism}
```


3 Keywords

3.1 Introduction

ConT_EXt is built around mechanisms and we have in this document already seen many of them, but now it is time to discuss them a bit closer. By a mechanism we mean a general construction that is shared by several macros, so-called instances. It is easy to define new instances and to set them up. We give a fake example, where we work with the non-existing mechanism X. To define a new instance, we use \defineX. Keywords can be given, as in


\defineX
[foo]
[a=x,
b=y]


Here the instance foo was defined, having the keywords a and b set to x and y, respectively. It is also possible to define a new instance as a copy of an existing one, as

\defineX
[foo]
[bar]

where the instance foo was defined as a copy of bar.

Once defined, it is possible to set up the instance foo with \setupX. Below we set the keyword c to z.

- $hat{A}$
- = \hat[color=C:3]{A}
- = \hat[symbolcolor=C:3]{A}

125

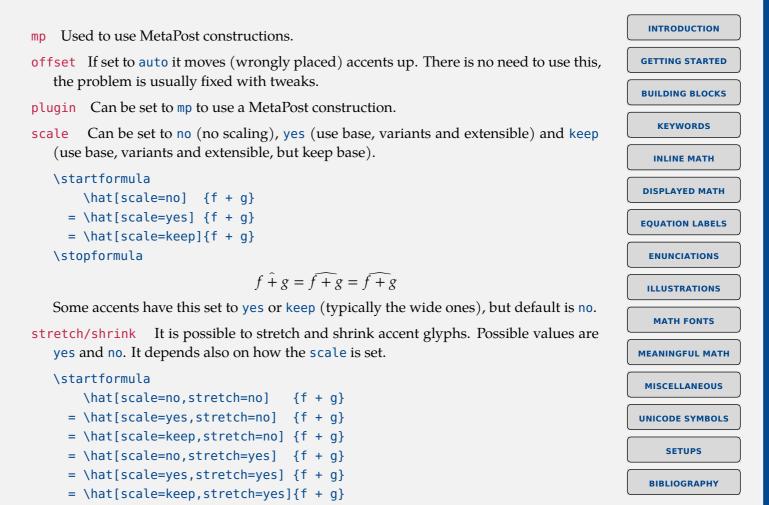
= \hat[textcolor=C:3]{A}
= \hat[color=C:3,
 symbolcolor=C:1]{A}
= \hat[color=C:3,
 textcolor=C:1]{A}
= \hat[color=C:3,
 symbolcolor=C:2,
 textcolor=C:1]{A}

$$\hat{A} = \hat{A} = \hat{A} = \hat{A} = \hat{A} = \hat{A} = \hat{A}$$

By default no color change is applied.

i If set to auto the dot over i and j that have accent over them will be removed. This will not happen otherwise.

\startformula
 \hat{i} = \hat[i=]{i} \neq \bar{j} = \bar[i=]{j}
\stopformula


$$\hat{\imath} = \hat{\imath} \neq \bar{\jmath} = \bar{j}$$

There is a conjugate instance that is like widebar except that is defined with i=, so the dots over i and j are kept.

mathstyle To set the math style of the content.

 $\frac{\hat{1}}{2} + \frac{\hat{1}}{2}$

GETTING STARTED
BUILDING BLOCKS
KEYWORDS
INLINE MATH
DISPLAYED MATH
EQUATION LABELS
ENUNCIATIONS
ILLUSTRATIONS
MATH FONTS
MEANINGFUL MATH
MISCELLANEOUS
UNICODE SYMBOLS
SETUPS
BIBLIOGRAPHY

\stopformula

$$f + g = \overline{f + g} = \overline{f + g} = \overline{f + g} = \overline{f + g} = \overline{f + g}$$

The \widehat and its friends have scale set to keep and both stretch and shrink enabled.

3.3 Alignments

\definemathalignment $[. \stackrel{1}{\ldots}]$ $[. \stackrel{2}{\ldots}]$ $[. . . . \stackrel{3}{=}]$ 0PT

\setupmathalignment
$$[\ldots, 1, \ldots]$$
 $[\ldots, \ldots]^2 = \ldots, \ldots]$

See math-ali.mkxl and strc-mat.mkxl for details. For simple alignments, see the separate section below.

- adaptive This key has been used for experimenting with adaption of widths of alignment cells and numbering.
- align Setup the alignment of different columns.

```
MISCELLANEOUS
\startformula
 startalign[n=4]
                                                                    UNICODE SYMBOLS
   NC A = B NC + C NC + D NR
   NC A' + 1 NC = B' + 1 NC + C' + 1 NC + D' + 1 NR
 \stopalign
                                                                      BIBLIOGRAPHY
\stopformula
```

INTRODUCTION

GETTING STARTED

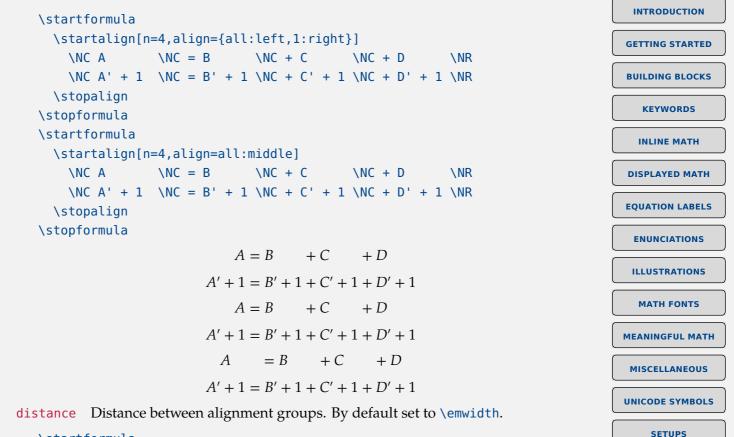
BUILDING BLOCKS

KEYWORDS

INLINE MATH

DISPLAYED MATH

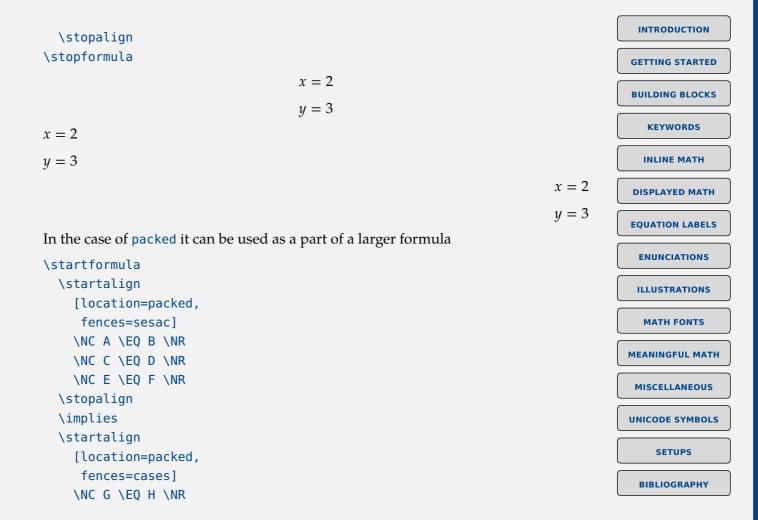
EQUATION LABELS


ENUNCIATIONS

ILLUSTRATIONS

MATH FONTS

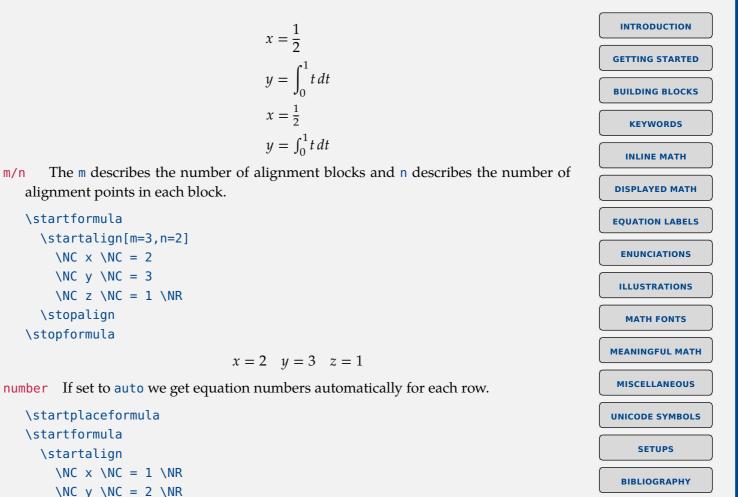
MEANINGFUL MATH


SETUPS


```
\startformula
  \startalign[m=2,n=2]
   \NC x \NC = 2
```

INTRODUCTION $NC \vee NC = 3 NR$ \stopalign **GETTING STARTED** \stopformula \startformula **BUILDING BLOCKS** \startalign[m=2,n=2,distance=2\emwidth] **KEYWORDS** $NC \times NC = 2$ $NC \vee NC = 3 NR$ **INLINE MATH** \stopalign \stopformula **DISPLAYED MATH** \startformula **EQUATION LABELS** \startalign[m=2,n=2,distance=0pt plus 1fil] $NC \times NC = 2$ **ENUNCIATIONS** NC y NC = 3 NR\stopalign ILLUSTRATIONS \stopformula MATH FONTS x = 2 y = 3x = 2 y = 3**MEANINGFUL MATH** x = 2y = 3**MISCELLANEOUS** fences If location is set to packed, we can use fences to surround the alignment. **UNICODE SYMBOLS** \startformula SETUPS \startalign[location=packed,fences=brace] $NC \times NC = 2 NR$ **BIBLIOGRAPHY** NC y NC = 3 NR

INTRODUCTION \stopalign \stopformula **GETTING STARTED** $\begin{cases} x = 2 \\ y = 3 \end{cases}$ **BUILDING BLOCKS KEYWORDS** grid By default set to math. Only applicable if in grid mode. **location** Determines where the alignments go. By default it is midaligned, but it can **INLINE MATH** also be set to left, right or packed. **DISPLAYED MATH** \startformula **EQUATION LABELS** \startalign $NC \times NC = 2 NR$ **ENUNCIATIONS** NC y NC = 3 NR\stopalign ILLUSTRATIONS \stopformula \startformula MATH FONTS \startalign[location=left] **MEANINGFUL MATH** $NC \times NC = 2 NR$ NC y NC = 3 NR**MISCELLANEOUS** \stopalign \stopformula **UNICODE SYMBOLS** \startformula SETUPS \startalign[location=right] $NC \times NC = 2 NR$ **BIBLIOGRAPHY** NC y NC = 3 NR


\NC I \EQ J \NR
\stopalign
\stopformula

$$\begin{array}{c} A = B \\ C = D \\ E = F \end{array} \right\} \Longrightarrow \begin{cases} G = H \\ I = J \end{cases}$$

mathstyle This controls the math style of the alignment.

```
\startformula
  \startalign
   \NC x \NC = \frac{1}{2} \NR
   \NC y \NC = \int_0^1 t \dd t \NR
  \stopalign
  \stopformula
  \startformula
   \startalign[mathstyle=text]
      \NC x \NC = \frac{1}{2} \NR
      \NC y \NC = \int_0^1 t \dd t \NR
   \stopalign
  \stopformula
```

INTRODUCTION **GETTING STARTED BUILDING BLOCKS KEYWORDS INLINE MATH DISPLAYED MATH EQUATION LABELS ENUNCIATIONS** ILLUSTRATIONS MATH FONTS **MEANINGFUL MATH MISCELLANEOUS** UNICODE SYMBOLS SETUPS **BIBLIOGRAPHY**

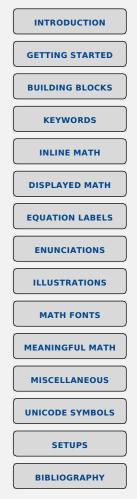
134

\stopalign	INTRODUCTION
\stopformula	GETTING STARTED
\stopplaceformula	GETTING STARTED
\startplaceformula	BUILDING BLOCKS
\startformula	
\startalign[number=auto]	KEYWORDS
$NC \times NC = 1 NR$	INLINE MATH
NC y NC = 2 NR	
\stopalign	DISPLAYED MATH
\stopformula \stopplaceformula	EQUATION LABELS
x = 1	ENUNCIATIONS
y = 2	ILLUSTRATIONS
(3.1)	
$x = 1 \tag{3.2.a}$	MATH FONTS
$y = 2 \tag{3.2.b}$	MEANINGFUL MATH
numberdistance Experimental.	MISCELLANEOUS
numberthreshold Experimental (for adaptive).	UNICODE SYMBOLS
reference Do not use on this level. Set a reference on each \NR or on the whole formula.	SETUPS

separator To put text inbetween columns of formulas.

\startformula

\startalign[m=2,n=2,separator=text]
 \NC x \NC = 1
 \NC y \NC = 2 \NR
 \stopalign
 \stopformula


x = 1text y = 2

spaceinbetween Space between lines in alignments. By default set to the same value
 as the space between lines in formulas (\setupformula[spaceinbetween=...]). The
 default value is quarterline.

x = 2

y = 3

```
\startformula
  \startalign
   \NC x \NC = 2 \NR
   \NC y \NC = 3 \NR
  \stopalign
  \stopformula
  \startformula
   \startalign[spaceinbetween=\lineheight]
      \NC x \NC = 2 \NR
      \NC y \NC = 3 \NR
   \stopalign
  \stopformula
```


text

\startformula

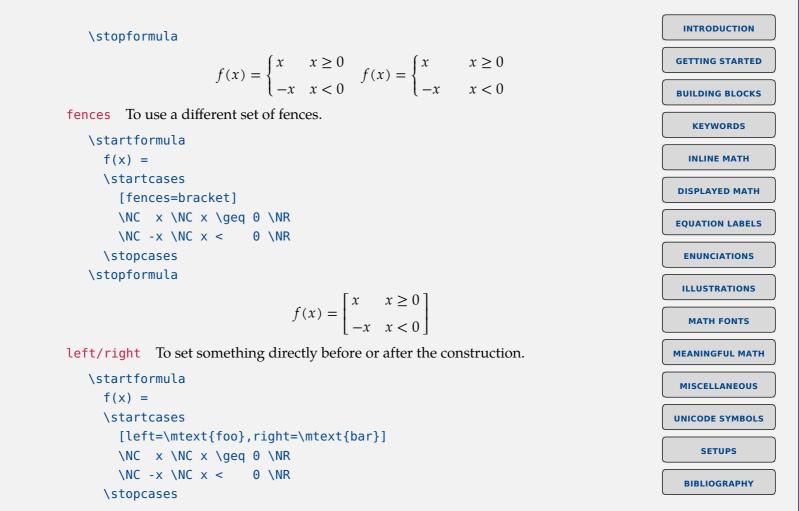
BIBLIOGRAPHY

INTRODUCTION *x* = 2 **GETTING STARTED** y = 3**BUILDING BLOCKS** suffix Internal. Not meant to be used. To add text to the left margin. With just text all lines will have that text, with **KEYWORDS** text:n only the nth line will get it. **INLINE MATH DISPLAYED MATH EQUATION LABELS ENUNCIATIONS ILLUSTRATIONS MATH FONTS MEANINGFUL MATH MISCELLANEOUS** = 2 **UNICODE SYMBOLS** = 3SETUPS = 2

INTRODUCTION textcolor To change color of the text in margin. As for text, with textcolor the color of all text comments will get the color, while with textcolor:n it will only apply to **GETTING STARTED** the one on line **n**. **BUILDING BLOCKS** \startformula \startalign[text:2=and,textcolor:2=C:2] **KEYWORDS** $NC \times NC = 2 NR$ **INLINE MATH** NC y NC = 3 NR\stopalign **DISPLAYED MATH** \stopformula **EQUATION LABELS** x = 2**ENUNCIATIONS** y = 3ILLUSTRATIONS textstyle MATH FONTS \startformula \startalign[text:1=foo,text:2=bar,textstyle:1=bold] **MEANINGFUL MATH** $NC \times NC = 2 NR$ **MISCELLANEOUS** $NC \vee NC = 3 NR$ \stopalign UNICODE SYMBOLS \stopformula SETUPS foo x = 2**BIBLIOGRAPHY** bar y = 3

3.4 Cases

\definemathcases
$$\begin{bmatrix} 1 \\ \cdots \end{bmatrix} \begin{bmatrix} 2 \\ \cdots \end{bmatrix} \begin{bmatrix} \cdots \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} \cdots \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} \cdots \\ 0 \\ 0 \end{bmatrix}$$

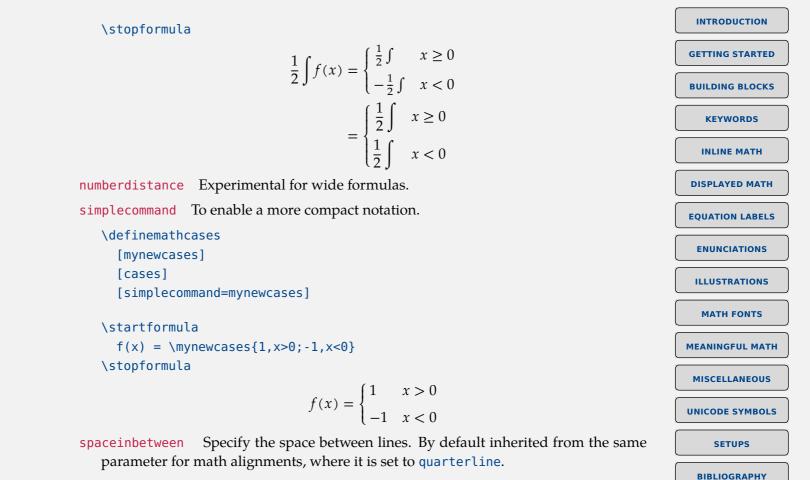

\setupmathcases
$$[\ldots, 1, \ldots]$$
 $[\ldots, 2^2, \ldots]$

Details are given in math-ali.mkxl

distance Specify the space between the columns.

```
\startformula
f(x) =
  \startcases
  \NC x \NC x \geq 0 \NR
  \NC -x \NC x < 0 \NR
  \stopcases
  \quad
f(x) =
  \startcases
  [distance=2em]
   \NC x \NC x \geq 0 \NR
   \NC -x \NC x < 0 \NR
   \NC -x \NC x < 0 \NR
   \NC -x \NC x < 0 \NR
   \Stopcases
</pre>
```

INTRODUCTION **GETTING STARTED BUILDING BLOCKS KEYWORDS INLINE MATH DISPLAYED MATH EQUATION LABELS ENUNCIATIONS** ILLUSTRATIONS MATH FONTS **MEANINGFUL MATH MISCELLANEOUS** UNICODE SYMBOLS SETUPS

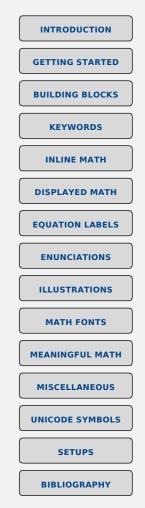

INTRODUCTION \stopformula $f(x) = foo \begin{cases} x & x \ge 0 \\ -x & x < 0 \end{cases} bar$ **GETTING STARTED BUILDING BLOCKS lefttext/righttext** To add something in between. Maybe the most relevant use is to **KEYWORDS** set lefttext to a comma or righttext to " if". \startformula **INLINE MATH** f(x) =**DISPLAYED MATH** \startcases [lefttext=\mtext{foo},righttext=\mtext{bar}] **EQUATION LABELS** $NC \times NC \times geq 0 NR$ NC - x NC x < 0 NR**ENUNCIATIONS** \stopcases **ILLUSTRATIONS** \stopformula $f(x) = \begin{cases} x \text{foo} & \text{bar} x \ge 0\\ -x \text{foo} & \text{bar} x < 0 \end{cases}$ MATH FONTS **MEANINGFUL MATH** leftmargin/rightmargin To specify some space around the cases construction. MISCELLANEOUS \startformula

f(x) =
\startcases
 [leftmargin=3em,rightmargin=4em]
 \NC x \NC x \geq 0 \NR
 \NC -x \NC x < 0 \NR</pre>

UNICODE SYMBOLS

SETUPS

INTRODUCTION \stopcases $+ \sin(x)$ **GETTING STARTED** \stopformula **BUILDING BLOCKS** $f(x) = \begin{cases} x & x \ge 0 \\ -x & x < 0 \end{cases} + \sin(x)$ **KEYWORDS** mathstyle Set the style of the content in the first column. By default it is text. **INLINE MATH** \definemathcases **DISPLAYED MATH** [mynewcases] **EQUATION LABELS** [cases] [mathstyle=display] **ENUNCIATIONS** ILLUSTRATIONS \startformula $frac{1}{2} \in f(x) \ =$ MATH FONTS \startcases $NC \int \{1\}{2} \in NC \times \ 0 \in \mathbb{N}R$ **MEANINGFUL MATH** $NC - frac{1}{2} \in 0 NR$ **MISCELLANEOUS** \stopcases breakhere =UNICODE SYMBOLS \startmynewcases $NC \int \{1\}{2} \in NC \times \mathbb{Q}$ SETUPS $NC \int \{1\}{2} \int NC x < 0 NR$ **BIBLIOGRAPHY** \stopmynewcases


\startformula

f(x) =
 \startcases
 \NC x \NC x \geq 0 \NR
 \NC -x \NC x < 0 \NR
 \stopcases
 \quad
 f(x) =
 \startcases
 [spaceinbetween=1\lineheight]
 \NC x \NC x \geq 0 \NR
 \NC -x \NC x < 0 \NR
 \stopcases
 \stopformula</pre>

 $f(x) = \begin{cases} x & x \ge 0 \\ -x & x < 0 \end{cases} \quad f(x) = \begin{cases} x & x \ge 0 \\ -x & x < 0 \end{cases}$

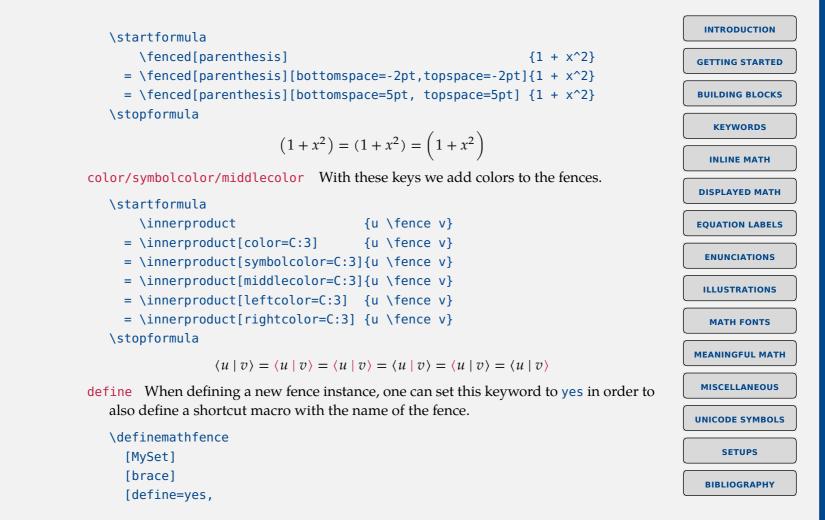
strut If set to yes (default) struts will be added. If set to no, then not.

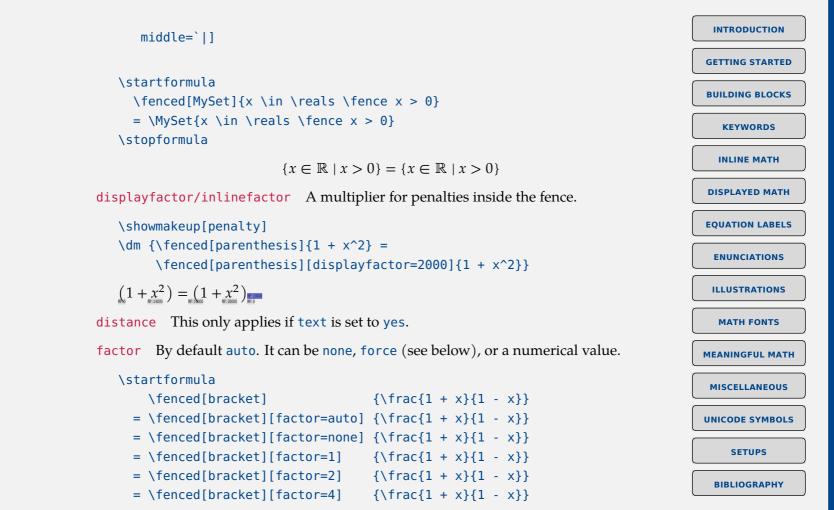
```
\startformula\showstruts
f(x) =
  \startcases
  \NC x \NC x \geq 0 \NR
  \NC -x \NC x < 0 \NR
  \stopcases</pre>
```


\quad
f(x) =
 \startcases
 [strut=no]
 \NC x \NC x \geq 0 \NR
 \NC -x \NC x < 0 \NR
 \stopcases
 \stopformula</pre>

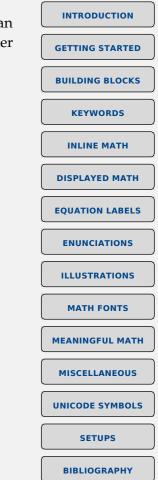
$$f(x) = \begin{cases} x & x \ge 0 \\ -x & x < 0 \end{cases} \quad f(x) = \begin{cases} x & x \ge 0 \\ -x & x < 0 \end{cases}$$

3.5 Fences


\definemathfence
$$\begin{bmatrix} 1 \\ \cdots \end{bmatrix} \begin{bmatrix} 2 \\ \cdots \end{bmatrix} \begin{bmatrix} \cdots \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} \cdots \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} \cdots \\ 0 \\ 0 \end{bmatrix}$$


\setupmathfence
$$[\ldots, 1, \ldots]$$
 $[\ldots, 2, 2, \ldots]$

Implementation details are given in math-fen.mkxl


alternative If alternative is set to small, one will step the sizes of the variants by 1. If set to big, the choices from the goodie files are used.

bottomspace/topspace These keywords can be used to fake the size of the contents of fences.

INTRODUCTION \stopformula $\left[\frac{1+x}{1-x}\right] = \left[\frac{1+x}{1-x}\right] = \left[\frac{1+x}{1-x}\right] = \left[\frac{1+x}{1-x}\right] = \left[\frac{1+x}{1-x}\right] = \left[\frac{1+x}{1-x}\right]$ **GETTING STARTED** BUILDING BLOCKS **KEYWORDS** Can be used together with factor=force. Note that the fence is not height/depth centered on the math axis anymore. **INLINE MATH** \startformula **DISPLAYED MATH** \fenced[bracket] $\{ \int \frac{1}{x} + x \} \{ 1 - x \} \}$ **EQUATION LABELS** = \fenced[bracket] **ENUNCIATIONS** [factor=force,height=1cm,depth=.5cm] $\{ \int \{x \in \{1 + x\} \{1 - x\} \}$ **ILLUSTRATIONS** = \fenced[bracket] [factor=force,height=.5cm,depth=1cm] MATH FONTS $\{ \frac{1 + x}{1 - x} \}$ **MEANINGFUL MATH** \stopformula MISCELLANEOUS $\left[\frac{1+x}{1-x}\right] = \left\lfloor\frac{1+x}{1-x}\right\rfloor = \left\lceil\frac{1+x}{1-x}\right\rceil$ UNICODE SYMBOLS SETUPS To use some style command for the left and right pieces in leftstyle/rightstyle **BIBLIOGRAPHY** text fences.


```
mathclass/leftclass/rightclass/middleclass By default a fencing behaves as an
  open atom to the left and close atom to the right. This can be altered by setting either
  mathclass (both left and right) or leftclass and rightclass, independently.
```

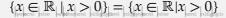
{x}

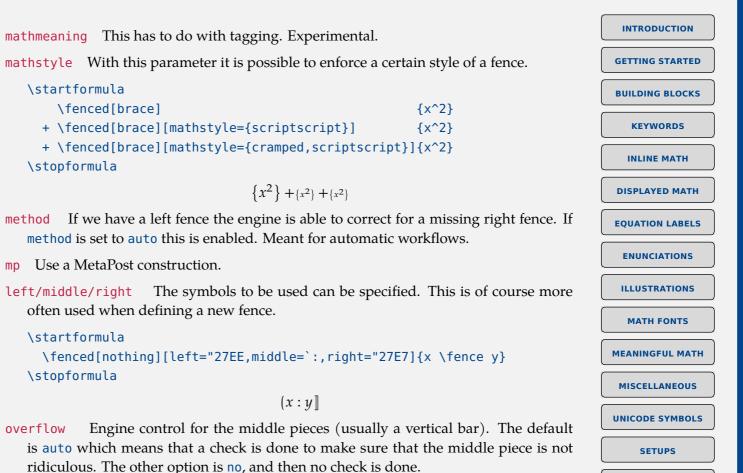
\startformula\showmakeup[mathglue]

```
Х
```

+ \fenced[brace]

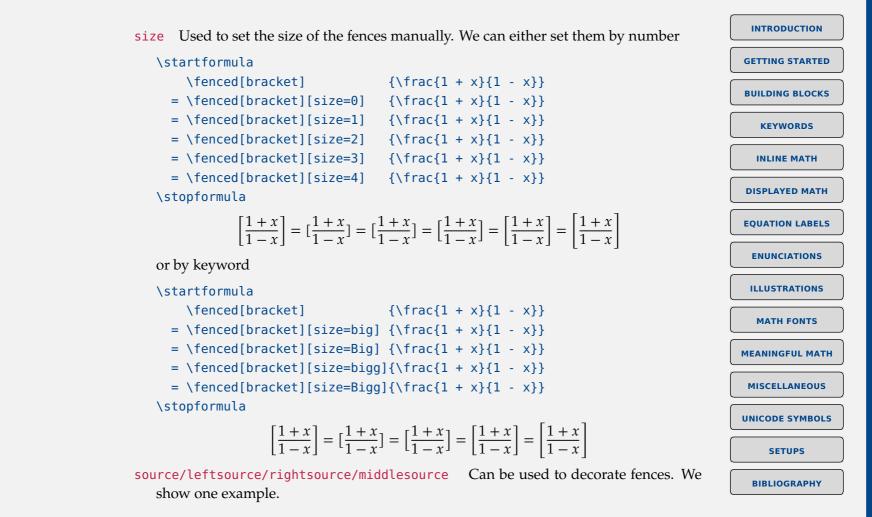
- + \fenced[brace][mathclass=\mathordinarycode] {x}
- + \fenced[brace][leftclass=\mathordinarycode] {x}
- + \fenced[brace][rightclass=\mathordinarycode]{x}


+ X


\stopformula

 $x_{|\text{artern}|} \{x_{|x_{|}}\}_{|+} \{x_{|x_{|}}\}_{|\text{artern}|} \{x_{|x_{|}}\}_{|x_{|}}\}_{|x_{|}}\}_{|x_{|}} \{x_{|x_{|}}\}_{|x_{|}}\}_{|x_{|}}\}_{|x_{|}}\}_{|x_{|}}\}_{|x_{|}}\}_{|x_{|}}\}_{|x_{|}}\}_{|x_{|}}\}_{|x_{|}}\}_{|x_{|}}\}_{|x_{|}}\}_{|x_{|}}\}_{|x_{|}}\}_{|x_{|}}\}_{|x_{|}}\}_{|x_{|}}\}_{|x_{|}}\}_{|x$

It is also possible to set the class of the middle symbol, if used.


```
\startformula\showmakeup[mathglue]
  \fenced[brace]
      [middle=`|]
      {x \in \reals \fence x > 0}
  = \fenced[brace]
      [middle=`|,
      middleclass=\mathordinarycode]
      {x \in \reals \fence x > 0}
\stopformula
```


plugin To use for example the MetaPost constructions, at runtime.

BIBLIOGRAPHY

we get
$$\frac{1}{(1+x^2)^2} + \frac{1}{(1+x^2)^2}$$
. If set to yes we get $\frac{1}{(1+x^2)^2} + \frac{1}{(1+x^2)^2}$.

setups Can be used to configure \suchthat, \where and \and. Still experimental, meant to bring meaning to set constructions. You can play with this:

\definemathfence[Set][set][define=yes,setups=math:fence:set:bar] %
:colon

state This is like the method key, but uses lua instead of the engine.

text If set to yes (not default) then we get a special kind of fences. One such instance is \tuparrow. Alan can give more details.

3.6 Formulas

\defineformula
$$[.1] [.2] [..., .3] [..., .3] [..., .3] [..., .0] [..., .0] [..., .3]$$

\setupformula $[\ldots, 1, \ldots]$ $[\ldots, \ldots]^2 = \ldots, \ldots]$

align This controls the alignment of the formula. By default formulas are centered on the line, but they can also be flushleft, flushright or slanted. The last option means that the first line is flush left, the last flush right, and the rest centered.

\startformula
 1\breakhere
 1+2\breakhere

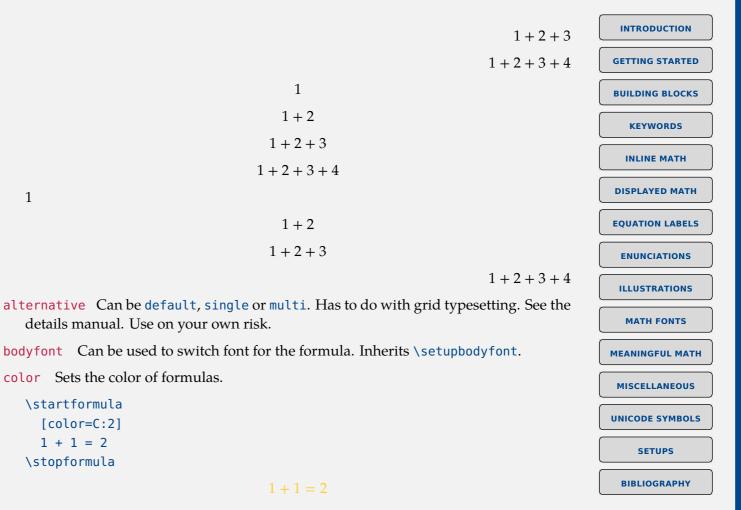
1+2+3\breakhere	INTRODUCTION
1+2+3+4	GETTING STARTED
\stopformula	
	BUILDING BLOCKS
\startformula	KEYWORDS
[align=flushleft]	KETWORDS
1\breakhere	INLINE MATH
1+2\breakhere	
1+2+3\breakhere	DISPLAYED MATH
1+2+3+4	
\stopformula	EQUATION LABELS
\startformula	ENUNCIATIONS
[align=flushright]	ILLUSTRATIONS
1\breakhere	
1+2\breakhere	MATH FONTS
1+2+3\breakhere	
1+2+3+4	MEANINGFUL MATH
\stopformula	MISCELLANEOUS
\startformula	UNICODE SYMBOLS
[align=middle]	
1\breakhere	SETUPS
1+2\breakhere	
1+2+3\breakhere	BIBLIOGRAPHY

1+2+3+4		
\stopformula		GETTING STARTED
\startformula		BUILDING BLOCKS
[align=slanted]		KEYWORDS
1\breakhere		
1+2\breakhere		INLINE MATH
1+2+3\breakhere		
1+2+3+4		DISPLAYED MATH
\stopformula		EQUATION LABELS
1		ENUNCIATIONS
1 + 2		
1 + 2 + 3		ILLUSTRATIONS
1 + 2 + 3 + 4		MATH FONTS
1		MEANINGFUL MATH
1 + 2		MISCELLANEOUS
1 + 2 + 3		
1 + 2 + 3 + 4		SETUPS
	1	

BIBLIOGRAPHY

1 + 2

1

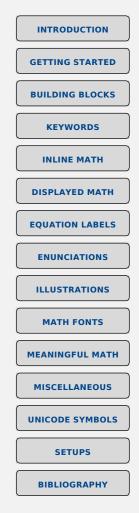

details manual. Use on your own risk.

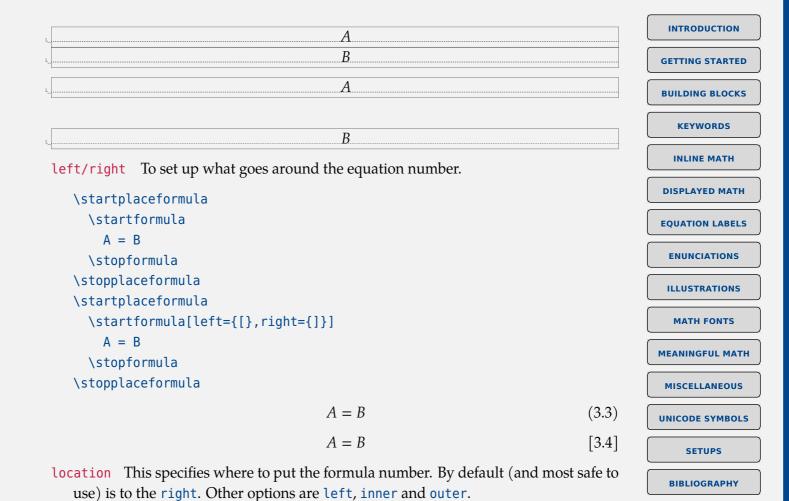
color Sets the color of formulas.

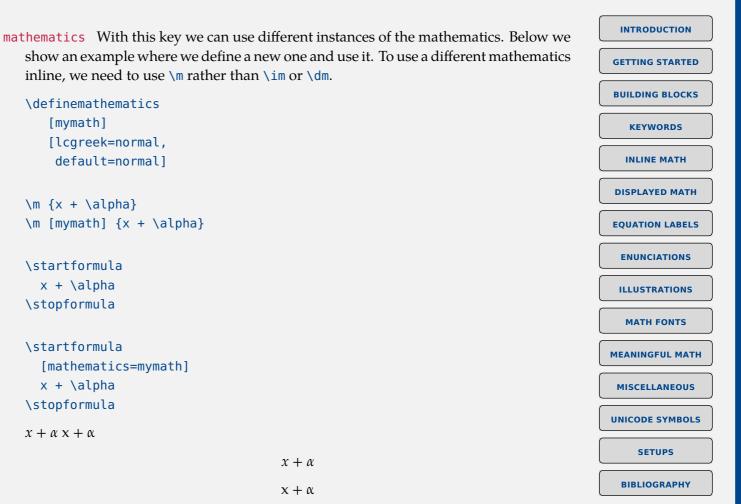
\startformula

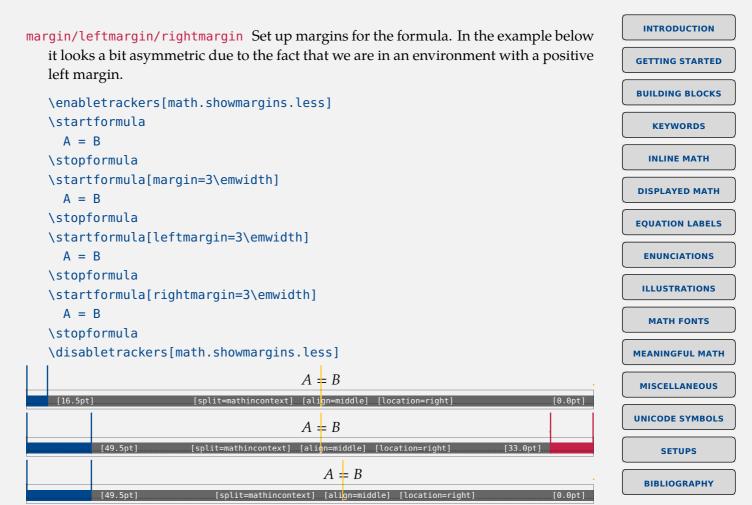
\stopformula

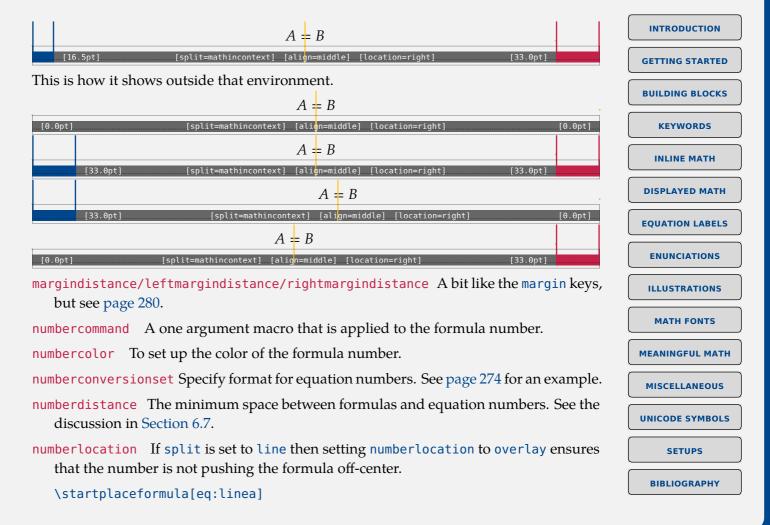
[color=C:2] 1 + 1 = 2


grid


- expansion By default disabled. Only active if expansion is enabled in the paragraph. functioncolor/functionstyle This applies to function, and here we set it at the formula level, but it can also be done at the function level. Has to do with grid typesetting. Do not use it with complex math. **KEYWORDS** indentnext Wether or not to indent the paragraph following the formula. Can be yes, no
- and auto, where auto indents if there is an extra line in the source after the formula, and otherwise not. Note that indenting has to be enabled for this to apply.
- interlinespace This sets the space *between* the baselines (but if too small they will of course not clash). By default set to 1.125\lineheight. It makes sense to have it slightly larger than the interline space.


A


В


\startformula
A \breakhere B
\stopformula
<pre>\startformula[interlinespace=0pt]</pre>
A \breakhere B
\stopformula
<pre>\startformula[interlinespace=2\lineheight</pre>
A \breakhere B
\stopformula

\startformula[split=line] m(b-a)\leq\int_a^b f(x)\dd x\leq M(b-a). \stopformula \stopplaceformula

\startplaceformula[eq:lineb]
 \startformula[split=line,numberlocation=overlay]
 m(b-a)\leq\int_a^b f(x)\dd x\leq M(b-a).
 \stopformula
 \stopplaceformula

$$m(b-a) \le \int_a^b f(x) \, dx \le M(b-a) \, .$$

$$m(b-a) \le \int_{a}^{b} f(x) \, dx \le M(b-a).$$
 (3.6)

numbermethod Experimental. Numbering formulas can easily go wrong. You can try down.

numberstrut If yes then use a strut for the equation number, if no then don't. The default is yes; always adds a strut even if there is no number.

numberstyle To set the style of the formula number.

- **numberthreshold** Threshold for moving the equation number down (if at the right margin) in alignments.
- order If set to reverse then the vertical placements of the formula and the formula number are switched. Experimental.

(3.5)

A = B \stopformula \samplefile{knuthmath}

Many readers will skim over formulas on their first reading of your exposition. Therefore, your sentences should flow smoothly when all but the simplest formulas are replaced by "blah" or some other grunting noise.

A = B

Many readers will skim over formulas on their first reading of your exposition. Therefore, your sentences should flow smoothly when all but the simplest formulas are replaced by "blah" or some other grunting noise.

A = B

Many readers will skim over formulas on their first reading of your exposition. Therefore, your sentences should flow smoothly when all but the simplest formulas are replaced by "blah" or some other grunting noise.

In this manual we wanted to prevent page breaks just before displayed formulas. For that reason we did

```
\definevspacing[mathtoppenalty][penalty:4000]
```

and then

```
\setupformula
```

```
[spacebefore={medium,mathtoppenalty},
```

```
spaceafter=medium]
```

GETTING STARTED

INTRODUCTION

BUILDING BLOCKS

KEYWORDS

INLINE MATH

DISPLAYED MATH

EQUATION LABELS

ENUNCIATIONS

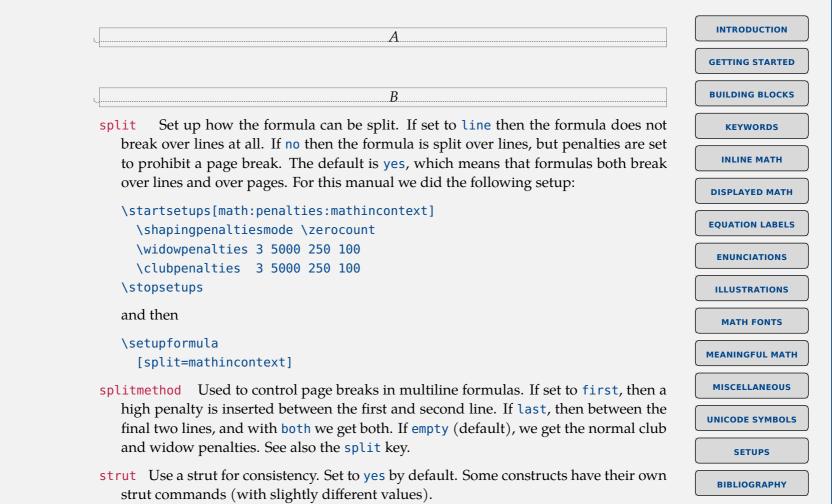
ILLUSTRATIONS

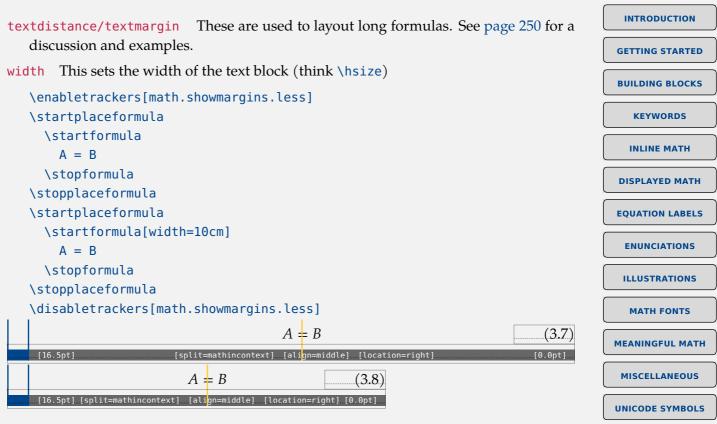
MATH FONTS

MEANINGFUL MATH

```
MISCELLANEOUS
```

UNICODE SYMBOLS


SETUPS


BIBLIOGRAPHY

spaceinbetween This sets the extra space <i>between</i> the lines.	INTRODUCTION
\startformula	GETTING STARTED
A \breakhere B	BUILDING BLOCKS
\stopformula	
<pre>\startformula[spaceinbetween=0pt]</pre>	KEYWORDS
A \breakhere B \stopformula	INLINE MATH
<pre>\startformula[spaceinbetween=1\lineheight]</pre>	
A \breakhere B	DISPLAYED MATH
\stopformula	EQUATION LABELS
<pre>\startformula[spaceinbetween=2\lineheight]</pre>	
A \breakhere B	ENUNCIATIONS
\stopformula	ILLUSTRATIONS
A	
B	MATH FONTS
	MEANINGFUL MATH
B	MISCELLANEOUS
A	
	UNICODE SYMBOLS
В	SETUPS

165

BIBLIOGRAPHY

3.7 Fractions

\definemathfraction
$$\begin{bmatrix} 1 \\ \cdots \end{bmatrix} \begin{bmatrix} 2 \\ \cdots \end{bmatrix} \begin{bmatrix} \cdots \\ 0 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} \cdots \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

BIBLIOGRAPHY

SETUPS

\setupmathfraction
$$[\dots, 1, \dots]$$
 $[\dots, 2^2 = \dots, \dots]$

Details are given in math-frc.mkxl

alternative Can be set to inner, outer or both, and it will reflect the style of the fraction. Here inner means that we listen to mathnumeratorstyle and mathdenominatorstyle (and these are by default set to the value of mathstyle). On the other hand, outer means that we listen to the mathstyle, but not the the mathnumeratorstyle or mathdenominatorstyle. Finally, both means that we listen to all parameters. We show some silly examples. Note that when we work in outer or both we might loose the vertical alignment with the math axis.

\startformula

- \frac[alternative=inner,mathnumeratorstyle=script] {a}{b}
- = \frac[alternative=inner,mathdenominatorstyle=scriptscript]{a}{b}
- = \frac[alternative=inner,mathstyle=script] {a}{b}
- = \frac[alternative=outer,mathnumeratorstyle=script] {a}{b}
- = \frac[alternative=outer,mathdenominatorstyle=scriptscript]{a}{b}
- = \frac[alternative=outer,mathstyle=script] {a}{b}
- = \frac[alternative=both, mathnumeratorstyle=script] {a}{b}
- = \frac[alternative=both, mathdenominatorstyle=scriptscript]{a}{b}

= \frac[alternative=both, mathstyle=script]
\stopformula

$$\frac{a}{b} = \frac{a}{b} = \frac{a}{b}$$

INTRODUCTION
GETTING STARTED
BUILDING BLOCKS
KEYWORDS
INLINE MATH
DISPLAYED MATH
EQUATION LABELS
ENUNCIATIONS
ILLUSTRATIONS
MATH FONTS
MEANINGFUL MATH
MISCELLANEOUS
UNICODE SYMBOLS
SETUPS
BIBLIOGRAPHY

 a^b

NTRODUCTIO

INTRODUCTION **GETTING STARTED BUILDING BLOCKS KEYWORDS INLINE MATH DISPLAYED MATH EQUATION LABELS ENUNCIATIONS ILLUSTRATIONS** MATH FONTS **MEANINGFUL MATH** MISCELLANEOUS UNICODE SYMBOLS SETUPS **BIBLIOGRAPHY**

The third fraction above might look wrong, but it is not, since mathnumeratorstyle and mathdenominatorstyle inherit from mathstyle.

bottomalign/topalign To set the alignment on the numerator and denominator, mainly used for a split fraction and sometimes for continued fractions.

color It is possible to set the color of the fraction, the numerator, and the denominator independently.

\startformula

\frac	{a}{b}		
= {\color[C:3]	{\frac{a}{b}}}		
= \frac[color=C:	3] {a}{b}		
= \frac[topcolor:	=C:3] {a}{b}		
= \frac[bottomco	lor=C:3]{a}{b}		
= \frac[textcolo	r=C:3] {a}{b}		
= \frac[symbolco	lor=C:3]{a}{b}		
\stopformula			

а						
$\overline{b} =$	\overline{b} =	\overline{b} =	$\overline{b} =$	\overline{b} =	\overline{b} =	\overline{b}

By default the fraction is set in the current color.

distance/bottomdistance/topdistance To set the distance between the fraction bar and the numerator and/or denominator. It is currently only done at the outer setting, since it should probably be the same for the whole document.

\setupmathfractions
 [distance=bottom,

bottomdistance=2ex] $dm { frac{a}{b} }$ \setupmathfractions [distance=top, topdistance=2ex] $dm { frac{a}{b} }$ \setupmathfractions [distance=both. topdistance=2ex, bottomdistance=2ex] $dm { frac{a}{b} }$ \setupmathfractions [distance=none] $dm { frac{a}{b} }$ аа a a \overline{b} \overline{b} b b

INTRODUCTION **GETTING STARTED BUILDING BLOCKS KEYWORDS INLINE MATH DISPLAYED MATH EQUATION LABELS ENUNCIATIONS ILLUSTRATIONS** MATH FONTS **MEANINGFUL MATH** MISCELLANEOUS UNICODE SYMBOLS SETUPS **BIBLIOGRAPHY**

fences Used for constructions like the binomial coefficients.

hfactor/vfactor These parameters are only active in skewed fractions (that is, if method is set to horizontal or line). There are two font parameters in the Opentype specification, SkewedFractionHorizontalGap and SkewedFractionVerticalGap, that are meant to control skewed fractions. They do not make sense (for us) so we do not use them. The hfactor/1000 is the fraction of the width of the slash glyph that the numerator and denominator are moved closer to each other horizontally.

The vfactor/1000 is the fraction of the math axis used to move numerator and denominator apart. Note that if method is set to horizontal, then there is also a compensation for the math axis.

\startformula\showglyphs

- \frac[hfactor=0, method=horizontal]{a}{b}
- = \frac[hfactor=250, method=horizontal]{a}{b}
- = \frac[hfactor=500, method=horizontal]{a}{b}
- = \frac[hfactor=1000, method=horizontal]{a}{b}

= \frac[hfactor=-1000,method=horizontal]{a}{b}
\stopformula

$$a/b = a/b = a/b = a/b = a/b = a/b$$

\startformula\showglyphs

\frac[vfactor=0, method=horizontal]{a}{b}

= \frac[vfactor=250, method=horizontal]{a}{b}

= \frac[vfactor=500, method=horizontal]{a}{b}

= \frac[vfactor=1000, method=horizontal]{a}{b}

= \frac[vfactor=-1000,method=horizontal]{a}{b}
\stopformula

$$a/b = a/b = a/b = a/b = a/b$$

\startformula\showglyphs

\frac[vfactor=0, method=line]{a}{b}

- = \frac[vfactor=250, method=line]{a}{b}
- = \frac[vfactor=500, method=line]{a}{b}
- = \frac[vfactor=1000, method=line]{a}{b}
- = \frac[vfactor=-1000,method=line]{a}{b}

\stopformula

$$a/b = a/b = a/b = a/b = a/b$$

left/right The values should be numbers, typically corresponding to delimiters; see the example with the Christoffel symbol on page 96.

margin Can be used to insert margins around numerator and denominator.

```
\startformula
```

\frac {a + b}{c}
= \frac[margin=\emwidth]{a + b}{c}

\stopformula

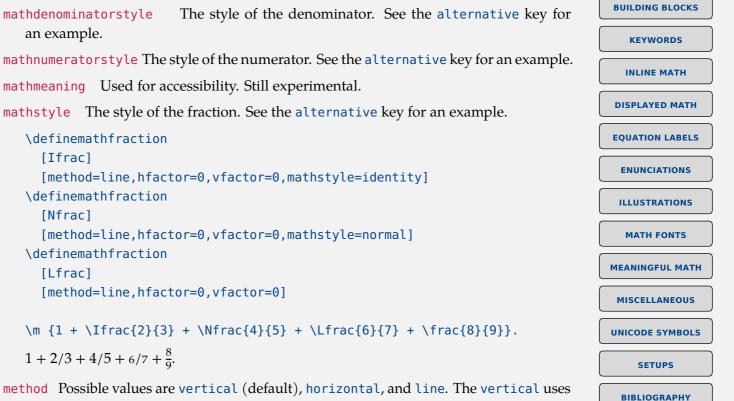
$$\frac{a+b}{c} = \frac{a+b}{c}$$

The default margin is Opt.

mathclass By default a fraction has the mathfraction class. But this can be changed if a fraction is used as something different. One could perhaps argue that the Christoffel symbol on page 96 is not really a fraction when it comes to spacing.

\startformula\showmakeup[mathglue]

- $1 + \frac{b}{b}$
- = \frac[mathclass=\mathordinarycode]{a}{b} + 1

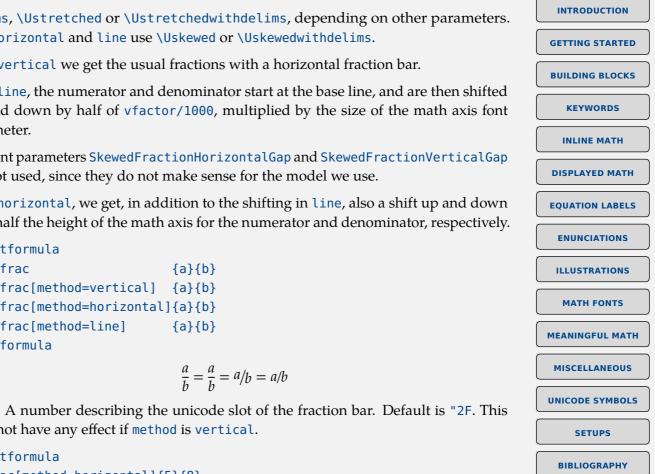


SETUPS

BIBLIOGRAPHY

\stopformula

$$1_{\text{ligbin}} \stackrel{a}{=} \frac{a}{b}_{\text{travel}} \stackrel{a}{=} \frac{a}{b}_{\text{travel}} \stackrel{a}{=} \frac{a}{b}_{\text{travel}} \stackrel{a}{=} \frac{a}{b}_{\text{travel}} \stackrel{a}{=} \frac{a}{b}$$



\Uatop, \Uatopwithdelims, \Uabove, \Uabovewithdelims, \Uover, \Uoverwith-

173

INTRODUCTION

GETTING STARTED

delims, \Ustretched or \Ustretchedwithdelims, depending on other parameters. The horizontal and line use \Uskewed or \Uskewedwithdelims.

With vertical we get the usual fractions with a horizontal fraction bar.

With line, the numerator and denominator start at the base line, and are then shifted up and down by half of vfactor/1000, multiplied by the size of the math axis font parameter.

The font parameters SkewedFractionHorizontalGap and SkewedFractionVerticalGap are not used, since they do not make sense for the model we use.

With horizontal, we get, in addition to the shifting in line, also a shift up and down with half the height of the math axis for the numerator and denominator, respectively.

\startformula

\startformula

middle

\frac	$a{b}$
<pre>= \frac[method=vertical]</pre>	{a}{b}
<pre>= \frac[method=horizontal]</pre>	{a}{b}
<pre>= \frac[method=line]</pre>	{a}{b}
\stopformula	

$$\frac{a}{b} = \frac{a}{b} = a/b = a/b$$

```
\frac[method=horizontal]{5}{8}
```

does not have any effect if method is vertical.

=
<pre>\frac[method=horizontal,</pre>
middle="2044]{5}{8}
=
<pre>\frac[method=horizontal,</pre>
middle="2215]{5}{8}
=
\frac[method=horizontal,
middle="7C]{5}{8}

\stopformula

$$5/8 = 5/8 = 5/8 = 5/8 = 5/8$$

mp Used for MetaPost constructions.

plugin Used for general constructions, for example MetaPost.

rule This is by default set to symbol which means that some symbol in the font is used repeatedly. This symbol is set by the symbol key, that by default is \fractionbarextenderuc, pointing to a private Unicode slot. If set to no then there will be no rule, as in binomial coefficients. If set to yes, a rule will be used. Then rulethickness can be used to set the width of the rule.

rulethickness To set the width of the rule if **rule=yes** is used.

source One can use **source** to decorate formulas, probably mainly for educational purposes. See anch-box.mkxl for examples on how to define and setup your own.

\setupboxanchorcontent

INLINE MATH

INTRODUCTION

GETTING STARTED

DISPLAYED MATH

EQUATION LABELS

ENUNCIATIONS

ILLUSTRATIONS

MATH FONTS

MEANINGFUL MATH

MISCELLANEOUS

UNICODE SYMBOLS

SETUPS

BIBLIOGRAPHY

KS

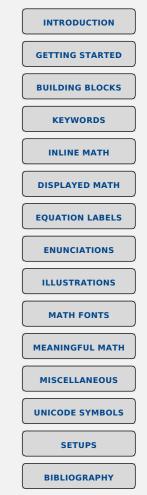
[top,left]
[rulecolor=C:2]

\startformula

\connectboxanchors[top][top]{one}{two}

x + \frac[source=\namedboxanchor{one}]{1+x}{2-x} =

z + \frac[source=\namedboxanchor{two}]{1+x^2}{2-x^3}
\stopformula


$$x + \frac{1+x}{2-x} = z + \frac{1+x^2}{2-x^3}$$

strut By default we have this key set to yes, which inserts struts in both the numerator and denominator. With no we get no struts.

symbol To set which symbol to use as a fraction bar if not using a rule. See the rule key.

threshold/displaythreshold/inlinethreshold Used for sizing delimiters around (skewed) fractions. The inlinethreshold is by default 1.2, the displaythreshold is by default auto (engine logic) and threshold is .25ex. Use with care.

\setupmathfractions[threshold=0ex]\im {\vfrac{1}{\frac{1}{2}}}
\setupmathfractions[threshold=1ex]\im {\vfrac{1}{\frac{1}{2}}}
\setupmathfractions[threshold=2ex]\im {\vfrac{1}{\frac{1}{2}}}
\setupmathfractions[inlinethreshold=auto]\im {\binom{1}{\frac{1}{2}}}
\setupmathfractions[inlinethreshold=1] \im {\binom{1}{\frac{1}{2}}}
\setupmathfractions[inlinethreshold=1.4] \im {\binom{1}{\frac{1}{2}}}

 $\frac{1/\frac{1}{2}}{\frac{1}{2}}\frac{1/\frac{1}{2}}{\frac{1}{2}}\frac{1/\frac{1}{2}}{\frac{1}{2}}\begin{pmatrix}1\\\frac{1}{2}\end{pmatrix}\begin{pmatrix}1\\\frac{1}{2}\end{pmatrix}\begin{pmatrix}1\\\frac{1}{2}\end{pmatrix}$

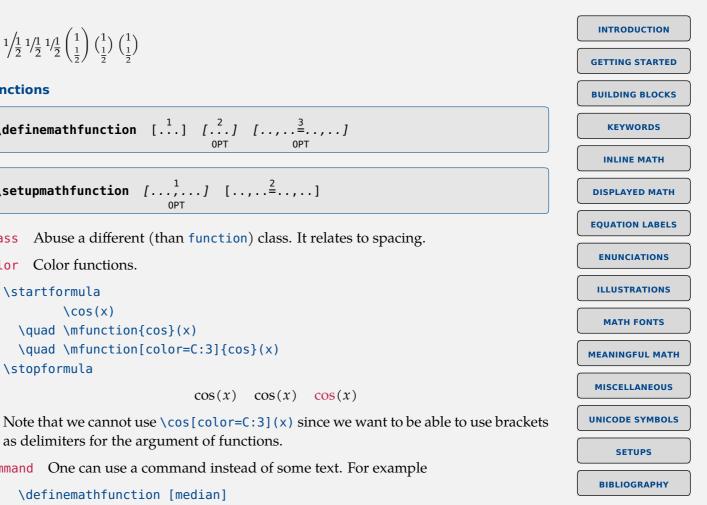
3.8 Functions

\definemathfunction $[\stackrel{1}{\ldots}] \quad [\stackrel{2}{\ldots}] \quad [\dots , \dots \stackrel{3}{=} \dots]$

\setupmathfunction
$$[\ldots, 1, \ldots]$$
 $[\ldots, \ldots]^2 = \ldots, \ldots]$

class Abuse a different (than function) class. It relates to spacing.

command One can use a command instead of some text. For example


color Color functions.

```
\startformula
        \cos(x)
  \quad \mfunction{cos}(x)
  \quad \mfunction[color=C:3]{cos}(x)
\stopformula
```

as delimiters for the argument of functions.

\definemathfunction [median]

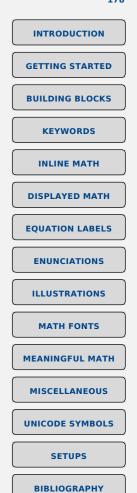
 $\cos(x) \cos(x) \cos(x)$

\definemathfunction [cs:median] [command=\widetilde]

will give a tilde instead of the word, when the main language is Czech.

left/right These are used for flexible function definitions, partly for accessibility. The symbols are defined in char-def.lua.

```
\definemathfunction[Starred][right=\adjointsymbol]
\startformula
  \Starred{C} \neq C^{*}
\stopformula
```


 $C^* \neq C^*$

- mathlimits If yes then the limits will go below (and on top), if no, then they will go to the side. If auto, we go below (above) in displayed formulas and to the side of inline formulas. Note that despite the placement, they are formally not sub/superscripts. (Compare but do not confuse it with the ^^ and __ constructions.)
- method For tagging, with method set to limits, the function get interpreted as a limit, and not as a function (like sine), and they read differently.

style Specify the style of functions.

\startformula

\cos(x)	
 \mfunction	$\{\cos\}(x)$
 <pre>\mfunction[style=bold]</pre>	$\{\cos\}(x)$
 <pre>\mfunction[style=\mathfra</pre>	k]{cos}(x)

\stopformula

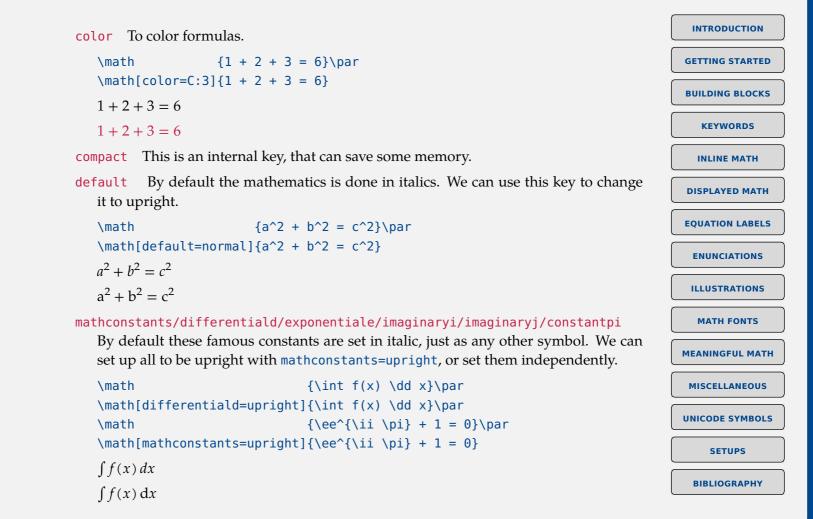
 $\cos(x) \quad \cos(x) \quad \cos(x) \quad \cos(x)$

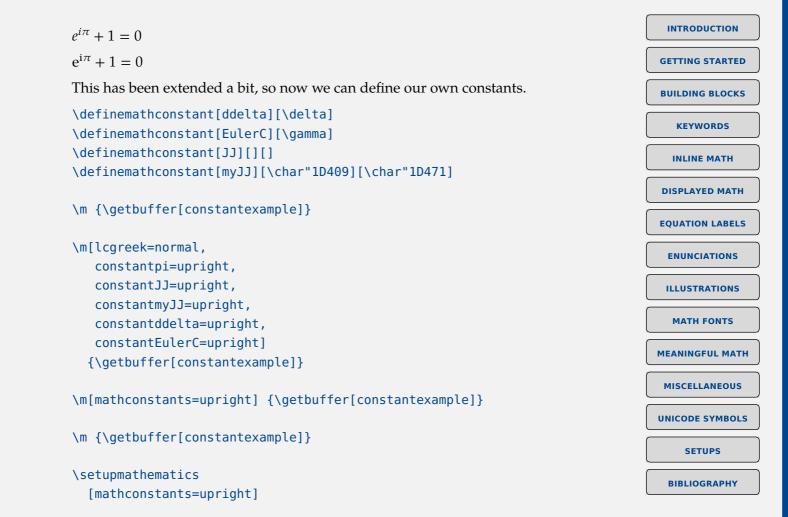
3.9 Mathematics

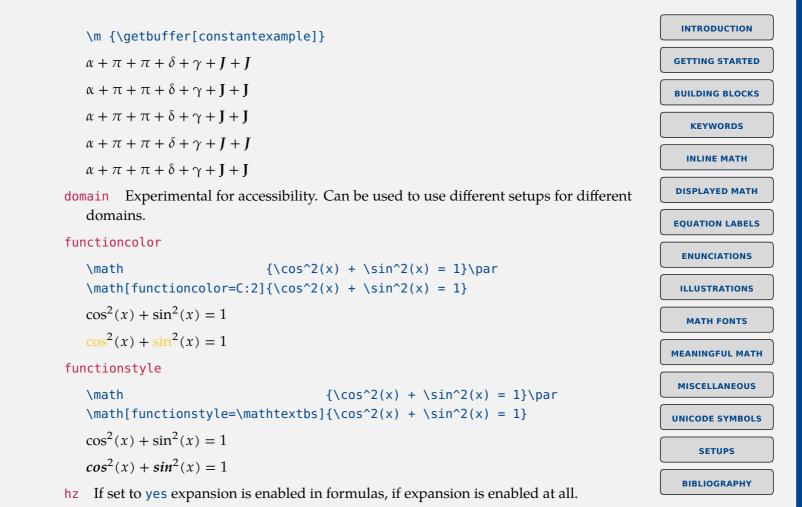
 $1 \rightarrow 2$

```
\definemathematics \begin{bmatrix} 1 \\ \cdots \end{bmatrix} \begin{bmatrix} 2 \\ \cdots \end{bmatrix} \begin{bmatrix} \cdots \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} \cdots \\ 0 \\ 0 \end{bmatrix}
```

\setupmathematics
$$[\ldots, 1, \ldots]$$
 $[\ldots, \ldots]^2 = \ldots, \ldots$

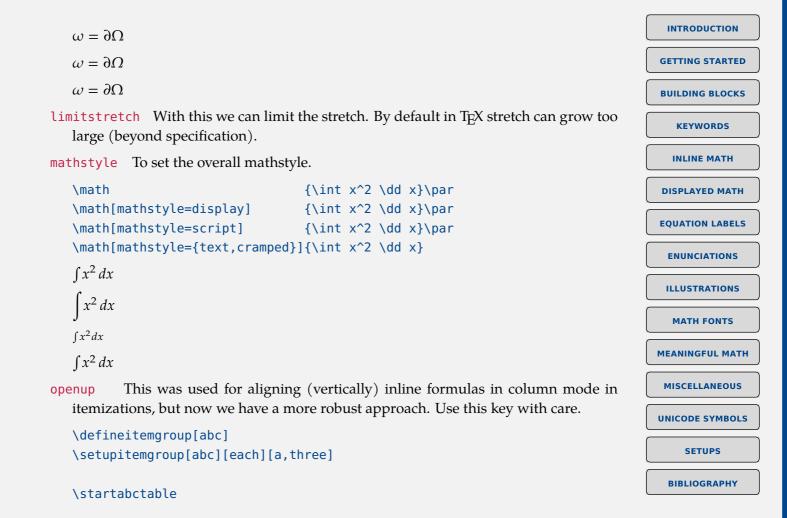

autofencing/autointervals Experimental. They will look for typical fencing symbols, and treat them differently if they are surrounded by spaces in the input.

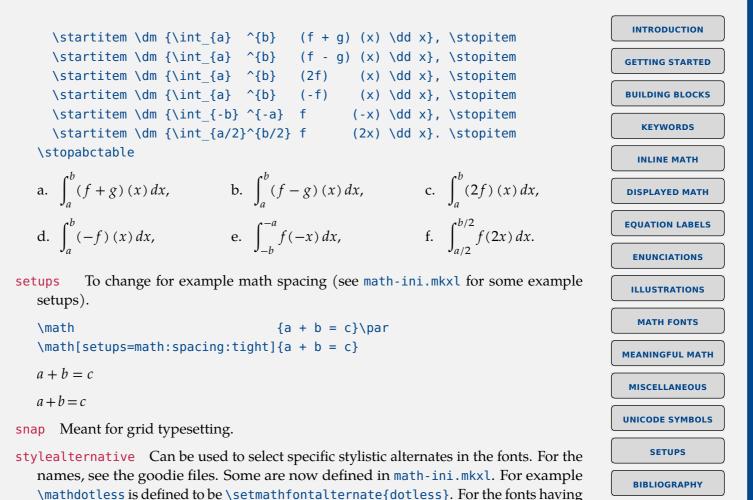

autonumbers/autopunctuation/autospacing See Section 2.16 for an example.

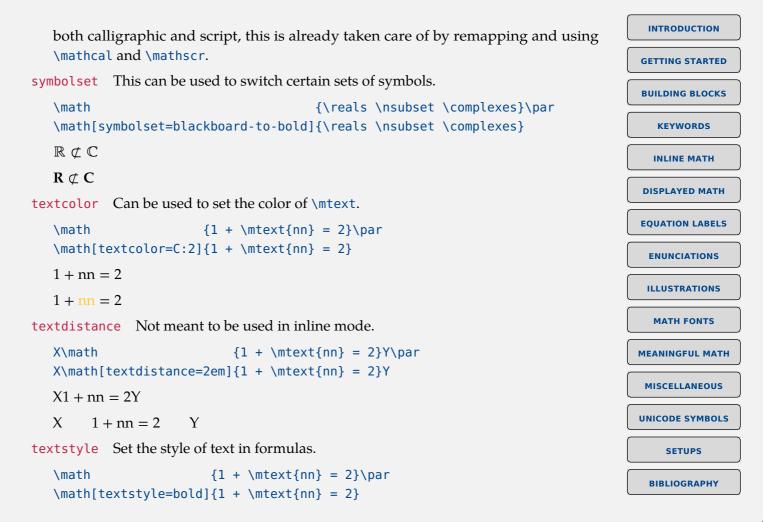

align By default l2r (lefttoright). Can be set to r2l (righttoleft) to get right to left formulas.

alignscripts A keyword for aligning scripts. See Section 2.7 for an example.

collapsing This key can be used to collapse certain combinations of characters into ligature type constructions. The lists have been described elsewhere.






INTRODUCTION **integral** To set the limits properties for integral type operators. This can also be done with \setupmathoperator. **GETTING STARTED** interscriptfactor To control space between scripts. See the example in Section 2.7. **BUILDING BLOCKS** italics If set to yes, some italic correction is handled between inline math and surrounding text. **KEYWORDS** \startlines **INLINE MATH** \setupmathematics[italics=no] A function \inf{f} is a function \inf{f} . A variable \inf{x} is a **DISPLAYED MATH** variable $\lim \{x\}$. **EQUATION LABELS** \setupmathematics[italics=yes] A function \inf{f} is a function \inf{f} . A variable \inf{x} is a **ENUNCIATIONS** variable $\lim \{x\}$. \stoplines **ILLUSTRATIONS** A function *f* is a function *f*. A variable *x* is a variable *x*. MATH FONTS A function *f* is a function *f*. A variable *x* is a variable *x*. **MEANINGFUL MATH** kernpairs Experimental. lcgreek/sygreek/ucgreek With these keys you can set up your preferred Greek. MISCELLANEOUS {\omega = \partial\Omega}\par \math UNICODE SYMBOLS \math[lcgreek=normal]{\omega = \partial\Omega}\par \math[ucgreek=italic]{\omega = \partial\Omega}\par SETUPS \math[sygreek=italic]{\omega = \partial\Omega} **BIBLIOGRAPHY** $\omega = \partial \Omega$

183

185

1 + nn = 2

1 + nn = 2

threshold It is possible to box small formulas not to break over lines. This key can be used to set the threshold. By default it is off. You can set it to a glue or to a predefined keyword, like medium (see math-ali.mkxl).

3.10 Matrices

\definemathmatrix $[\begin{array}{c} 1 \\ 0 \end{array}] \begin{bmatrix} 2 \\ 0 \end{array}]$

\setupmathmatrix
$$[\ldots, 1, \ldots]$$
 $[\ldots, \ldots]^2 = \ldots, \ldots$

The TEX code behind the matrix mechanism can be found in math-ali.mkxl.

align To align the columns. By default they are centered. The all:right will flush all columns to the right. Note that by adding 3:left and 2:middle the all:right is overwritten for these columns.

```
\startformula

\startmathmatrix

\NC 1 \NC 2 \NC -3 \NC 4 \NR

\NC -5 \NC -6 \NC 7 \NC 8 \NR

\stopmathmatrix

\qquad

Bibliography
```

INTRODUCTION

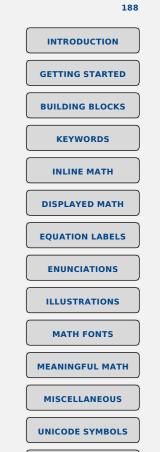
GETTING STARTED

BUILDING BLOCKS

KEYWORDS

INLINE MATH

DISPLAYED MATH


EQUATION LABELS

ENUNCIATIONS

ILLUSTRATIONS

MATH FONTS

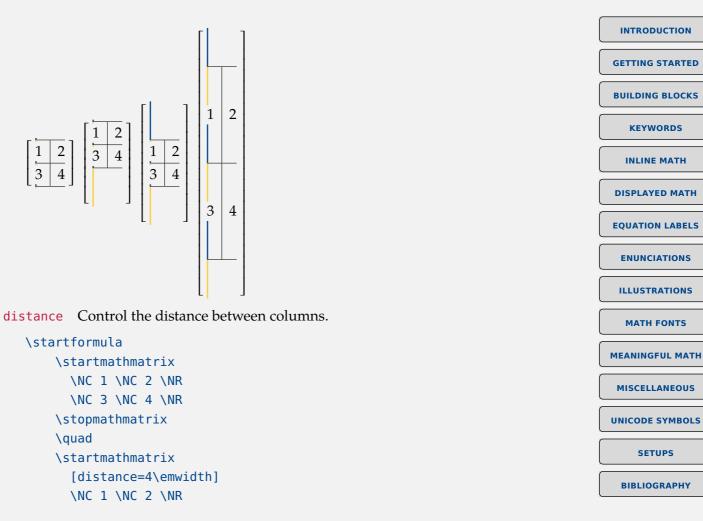
MEANINGFUL MATH

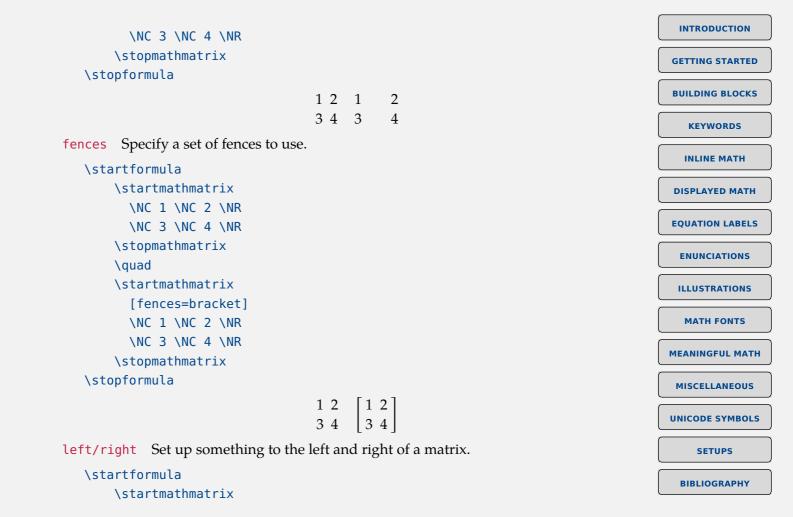
SETUPS

BIBLIOGRAPHY

```
\startmathmatrix
    [align={all:right}]
    \NC 1 \NC 2 \NC -3 \NC 4 \NR
    \NC -5 \NC -6 \NC 7 \NC 8 \NR
    \stopmathmatrix
    \quad
    \startmathmatrix
    [align={all:right,3:left,2:middle}]
        \NC 1 \NC 2 \NC -3 \NC 4 \NR
        \NC -5 \NC -6 \NC 7 \NC 8 \NR
        \stopmathmatrix
    \stopmathmatrix
```

boffset/moffset/toffset Offset in matrices. In the examples below, the matrixoffset
 buffer is given by


\dm { \startmathmatrix [fences=bracket] \HL \NC 1 \VL 2 \NR \HL \NC 3 \VL 4 \NR \HL


INTRODUCTION \stopmathmatrix **GETTING STARTED** We then use the following code, note that we first add a bottom offset with **boffset**, **BUILDING BLOCKS** then a top offset with toffset and finally also a middle offset with moffset. **KEYWORDS** \enabletrackers[math.matrices.hl] \getbuffer[matrixoffset] **INLINE MATH** \setupmathmatrix[boffset=2\lineheight] \getbuffer[matrixoffset] **DISPLAYED MATH** \setupmathmatrix[toffset=2\lineheight] **EQUATION LABELS** \getbuffer[matrixoffset] \setupmathmatrix[moffset=2\lineheight] **ENUNCIATIONS** \getbuffer[matrixoffset] ILLUSTRATIONS MATH FONTS **MEANINGFUL MATH**

UNICODE SYMBOLS

MISCELLANEOUS

SETUPS


```
INTRODUCTION
GETTING STARTED
BUILDING BLOCKS
   KEYWORDS
  INLINE MATH
DISPLAYED MATH
EQUATION LABELS
 ENUNCIATIONS
 ILLUSTRATIONS
  MATH FONTS
MEANINGFUL MATH
 MISCELLANEOUS
UNICODE SYMBOLS
    SETUPS
```

BIBLIOGRAPHY

```
[left=\left(,right=\right)]
     NC 1 NC 2 NR
     NC 3 NC 4 NR
   \stopmathmatrix
   \quad
   \startmathmatrix
     [fences=parenthesis]
     NC 1 NC 2 NR
     NC 3 NC 4 NR
   \stopmathmatrix
   \quad
   \startmathmatrix
     [left=\left(,right=\right),fences=bracket]
     NC 1 NC 2 NR
     NC 3 NC 4 NR
   \stopmathmatrix
\stopformula
```

(12)	(12)	([1 2])	
(34)	(34)	$\left(\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \right)$	

The left and right content goes outside of the fences, if both are present.

leftedge/rightedge To add content to the edges.

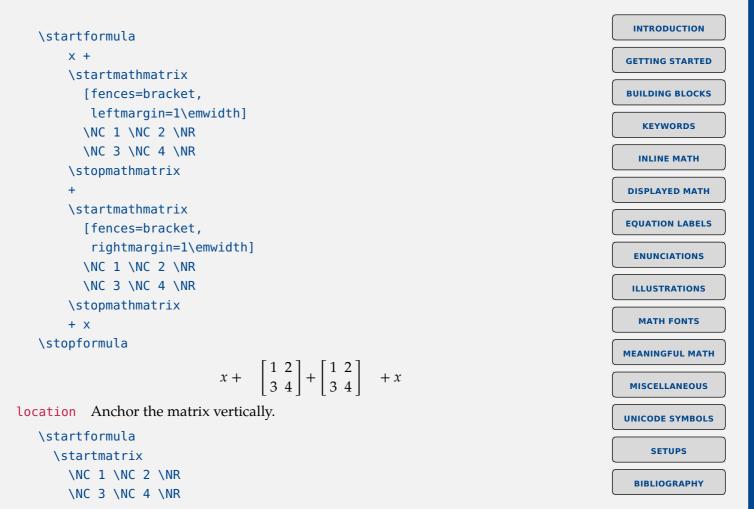
\dontleavehmode
\ruledhbox {\im {


```
\LT \ttx 1 \NC a \NC \dots \NC aa \RT \ttx 1 \NR
   \LT \ttx 2 \NC b \NC \dots \NC bb \RT \ttx 2 \NR
   \LT \ttx 3 \NC c \NC \dots \NC cc \RT \ttx 3 \NR
  \stopmatrix
}}\qquad
\ruledhbox {\im {
  \startmatrix[left=\left(,right=\right),rightedge=1em,leftedge=1em]
                                                                             MATH FONTS
   \LT \ttx 1 \NC a \NC \dots \NC aa \RT \ttx 1 \NR
   \LT \ttx 2 \NC b \NC \dots \NC bb \RT \ttx 2 \NR
                                                                           MEANINGFUL MATH
   \LT \ttx 3 \NC c \NC \dots \NC cc \RT \ttx 3 \NR
  \stopmatrix
                                                                            MISCELLANEOUS
}}
                                                                           UNICODE SYMBOLS
SETUPS
                                                                            BIBLIOGRAPHY
```

leftmargin/rightmargin Add space between the content and the fences.

\startmatrix[left=\left(,right=\right)]

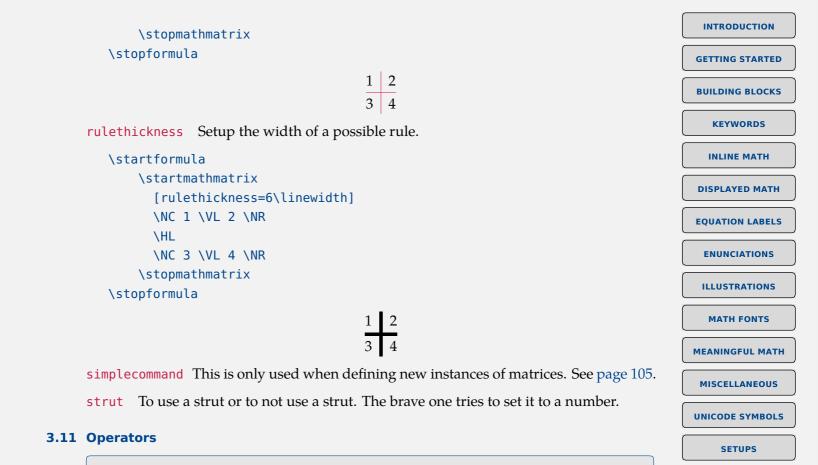
\stopmatrix


\ruledhbox {\im {

}}\qquad

\LT \ttx 1 \NC a \NC \dots \NC aa \RT \ttx 1 \NR

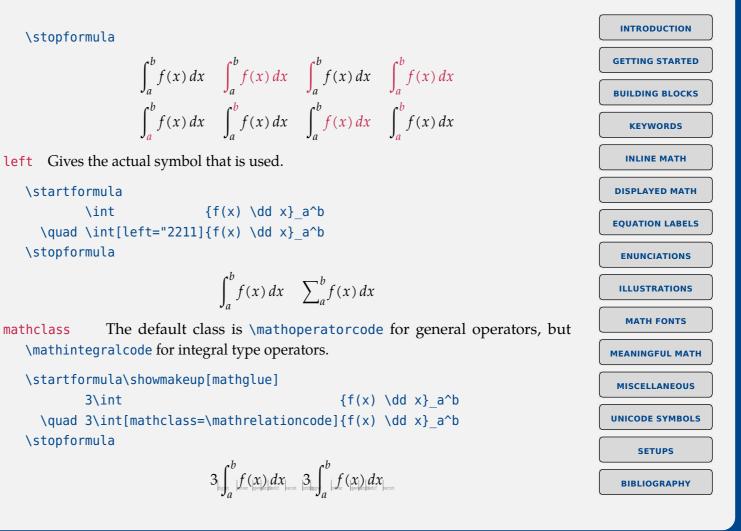
\LT \ttx 2 \NC b \NC \dots \NC bb \RT \ttx 2 \NR
\LT \ttx 3 \NC c \NC \dots \NC cc \RT \ttx 3 \NR


\startmatrix[left=\left(,right=\right),rightedge=none,leftedge=none]

\stopmatrix

=

\startmatrix[location=top] NC 1 NC 2 NRNC 3 NC 4 NR\stopmatrix = \startmatrix[location=bottom] NC 1 NC 2 NRNC 3 NC 4 NR\stopmatrix \stopformula 1 2 1 2 $= 1 \ 2 = 3 \ 4$ 3 4 3 4 **mathstyle** Set the math style of each matrix entry. **MEANINGFUL MATH rulecolor** Setup the color of a possible rule. **MISCELLANEOUS** \startformula \startmathmatrix UNICODE SYMBOLS [rulecolor=C:3] SETUPS NC 1 VL 2 NR\HL **BIBLIOGRAPHY** NC 3 VL 4 NR


\definemathoperator $[\begin{array}{c} 1 \\ 0 \\ 0 \\ \end{array}] \begin{bmatrix} 2 \\ 0 \\ 0 \\ 0 \\ \end{array}] \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ \end{array}] \begin{bmatrix} 2 \\ 0 \\ 0 \\ 0 \\ \end{array}] \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \\ \end{array}]$

KEYWORDS » OPERATORS

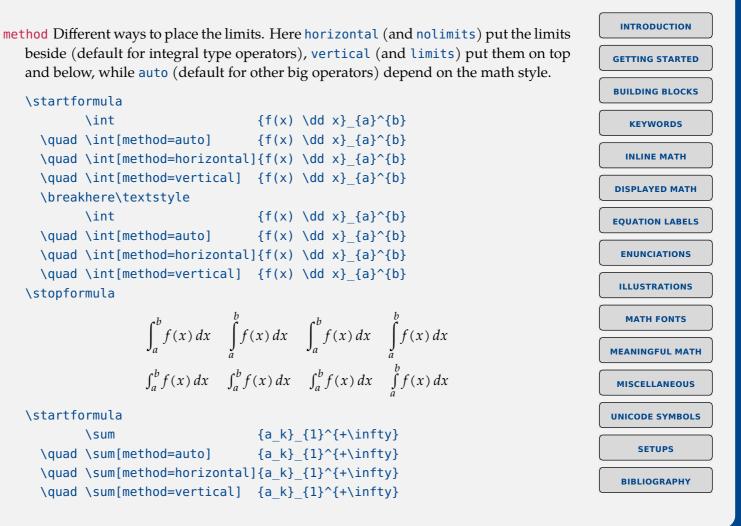
197

\setupmathoperator
$$[\dots, \dots, \dots]$$
 $[\dots, \dots, \sum_{orr}^2 \dots, \dots]$ INTRODUCTION\setupmathoperator $[\dots, \dots, \dots]$ $[\dots, \dots, \sum_{orr}^2 \dots, \dots]$ GETTING STARTEDDetails are given in math-lop.mkxl.BULLDING BLOCKSbottom/top Just another way to specify limits on big operators.Kerwords\startformula\int_a^b f(x) \dd x\quad \int[bottom=a, top=b]{f(x) \dd x}INLINE MATH\stopformula $\int_a^b f(x) dx \int_a^b f(x) dx$ color/symbolcolor/bottomcolor/topcolor/textcolor/numbercolor Color operatorsEQUATION LABELS\startformula $(int f(x) \ dd x)_a^b$ \startformulaMATH FONTS\startformulaMATH FONTS\und \int[color=C:3]{f(x) \dd x}_a^b\und \int[color=C:3]{f(x) \dd x}_a^b\und \int[color=C:3]{f(x) \dd x}_a^b\und \int[bottomcolor=C:3, bottom=a, top=b] {f(x) \dd x}SETUPS\und \int[topcolor=C:3, bottom=a, top=b] {f(x) \dd x}SETUPS\und \int[topcolor=C:3, bottom=a, top=b] {f(x) \dd x}BELLOGRAPHY

198

\stopformula

\startformula


\stopformula

\stopformula

mathclass

\int

3\int

ILLUSTRATIONS

MATH FONTS

MEANINGFUL MATH

MISCELLANEOUS

UNICODE SYMBOLS

SETUPS

BIBLIOGRAPHY

size Some fonts come with extensible integrals. See the example on page 85.

\quad \sum[method=auto] {a_k}_{1}^{+\infty} \quad \sum[method=horizontal]{a k} {1}^{+\infty}

\quad \sum[method=vertical] {a k} {1}^{+\infty}

{a k} {1}^{+\infty}

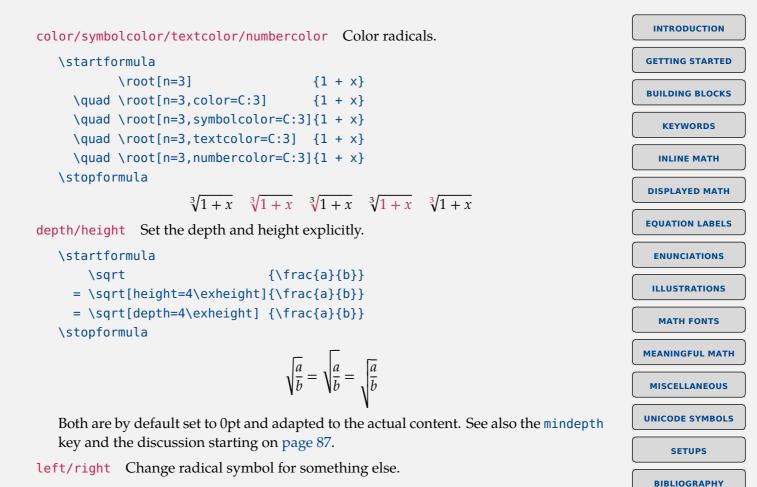
 $\sum_{1}^{+\infty} a_k = \sum_{1}^{+\infty} a_k = \sum_{1}^{+\infty} a_k = \sum_{1}^{+\infty} a_k$

 $\sum_{1}^{+\infty} a_k \quad \sum_{1}^{+\infty} a_k \quad \sum_{1}^{+\infty} a_k \quad \sum_{1}^{+\infty} a_k$

3.12 Radicals

\definemathradical $[\stackrel{1}{\ldots}] \quad [\stackrel{2}{\ldots}] \quad [\dots , \stackrel{3}{=} \dots] \\ OPT \qquad OPT$

\setupmathradical
$$[\ldots, 1, \ldots]$$
 $[\ldots, \ldots]^2 = \ldots, \ldots$


See math-rad.mkxl for the implementation.

\breakhere\textstyle

\sum

\stopformula

These keywords can either be used directly on a radical, or with \setupmathradical on a predefined or on your own radical instance. If you want to look into the source then start with the file math-rad.mklx.

\startformula

\sqrt	{a + b}		
= \sqrt[left="7B]	{a + b}	GETTING STARTED	
= \sqrt[left=\zerocount \stopformula	BUILDING BLOCKS		
	$\sqrt{a+b} = \{\overline{a+b} = \overline{a+b}\}$	KEYWORDS	
A more natural example mig	INLINE MATH		
leftmargin/rightmargin Mar set to 0pt. For a few fonts we	DISPLAYED MATH		
\startformula		EQUATION LABELS	
\sqrt	\sqrt $\{ \{a\} \}$		
= \sqrt[leftmargin=\emw = \sqrt[rightmargin=\em	ILLUSTRATIONS		
\stopformula		MATH FONTS	
	$\sqrt{\frac{a}{b}} = \sqrt{-\frac{a}{b}} = \sqrt{\frac{a}{b}}$	MEANINGFUL MATH	
mathstyle Specifies the mathsty	MISCELLANEOUS		
\startformula		UNICODE SYMBOLS	
\sqrt + A^{\sqrt	{x^2} {x^2}}	SETUPS	
= \sqrt[mathstyle=un + A^{\sqrt[mathstyle=un	BIBLIOGRAPHY		

202

\stopformula

$$\sqrt{x^2} + A^{\sqrt{x^2}} = \sqrt{x^2} + A^{\sqrt{x^2}}$$

mindepth This enforces a minimal depth of the expression. It is currently set to
.2\exheight, but it might be needed to set by font. Compare with depth and height
that enforces a certain depth and height.

- mp Use a MetaPost construction instead.
- n Sets the degree of the radical.

```
\startformula
\root[n=5]{x}
\stopformula
```

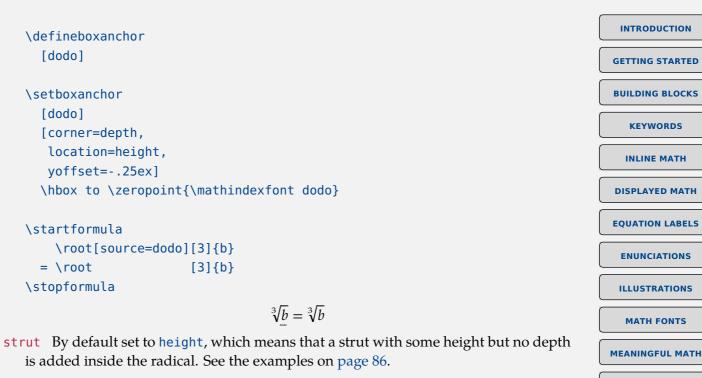
 $\sqrt[5]{x}$

plugin By default unset. If set to mp then the radical symbol is drawn with MetaFun.

```
\startformula
    \sqrt{1 + x}
    = \sqrt[plugin=mp]{1 + x}
    = \sqrt[plugin=mp,symbolcolor=C:2]{1 + x}
\stopformula
```

$$\sqrt{1+x} = \sqrt{1+x} = \sqrt{1+x}$$

rule With rule set to yes, a rule is used instead of a symbol.source Can be used to anchor material.


GETTING STARTED BUILDING BLOCKS KEYWORDS INLINE MATH DISPLAYED MATH EQUATION LABELS ENUNCIATIONS ILLUSTRATIONS MATH FONTS **MEANINGFUL MATH**

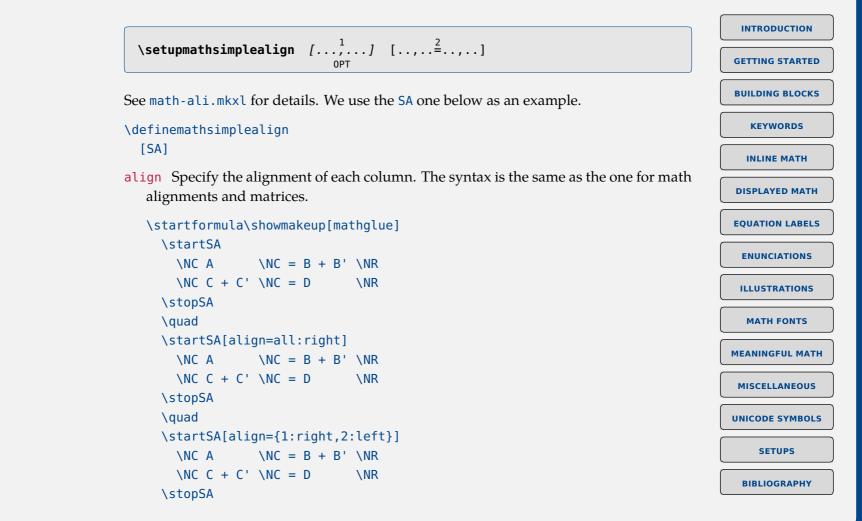
INTRODUCTION

MISCELLANEOUS

UNICODE SYMBOLS

SETUPS

top If rule is set to symbol, one shall set top to the used extensible symbol. We use a suitable (minus like) symbol by default.


3.13 Simple alignments

MISCELLANEOUS

UNICODE SYMBOLS

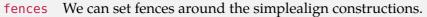
SETUPS

\stopformula

$$\begin{array}{c} A \\ \downarrow_{\text{urref}} \downarrow_{\text{burref}} \downarrow_{\text{burref}} \downarrow_{\text{burref}} \end{pmatrix}^{\text{burref}} A_{\downarrow_{\text{urref}}} \downarrow_{\text{burref}} B' \\ A_{\downarrow_{\text{urref}}} \downarrow_{\text{burref}} A_{\downarrow_{\text{urref}}} A_{\downarrow_{\text{burref}}} A_{\downarrow_{\text{bu$$

From this example, we see that by default all columns are aligned to the middle. We change that so that the first one is flush right, the second flush left.

```
\setupmathsimplealign
[SA]
[align={1:right,2:left}]
```


- alternative Usually unset. But if set to equationsystem we get the systems of equations, discussed in Section 11.4.
- **distance** Determines the horizontal distance between the two columns. By default it is set to math, which means that it will use the proper interatom spacing.

```
\startformula\showmakeup[mathglue]
\startSA
   \NC A   \NC = B + B' \NR
   \NC C + C' \NC = D   \NR
   \stopSA
   \quad
   \startSA[distance=math]
   \NC A    \NC = B + B' \NR
   \NC C + C' \NC = D         \NR
   \StopSA
```

INTRODUCTION **GETTING STARTED BUILDING BLOCKS KEYWORDS INLINE MATH DISPLAYED MATH EQUATION LABELS ENUNCIATIONS ILLUSTRATIONS** MATH FONTS **MEANINGFUL MATH** MISCELLANEOUS UNICODE SYMBOLS SETUPS **BIBLIOGRAPHY**

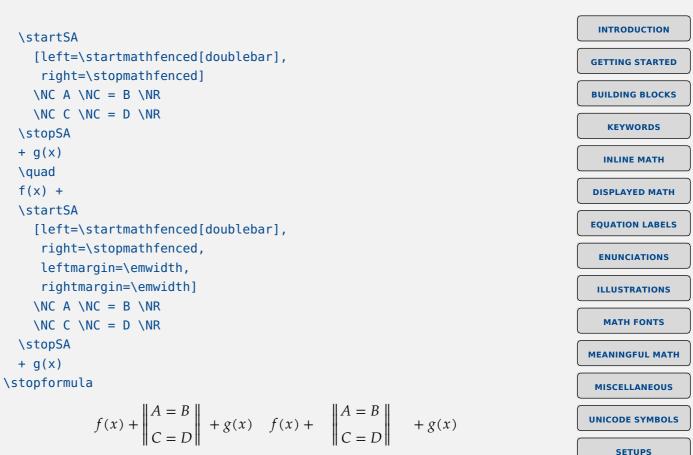
\quad
\startSA[distance=0pt]
 \NC A \NC = B + B' \NR
 \NC C + C' \NC = D \NR
 \stopSA
\stopformula

$$\begin{array}{c} A_{|_{\text{parter}}|_{\text{planter}}|_{\text{planter}}|_{\text{planter}}} B' & A_{|_{\text{planter}}|_{\text{planter}}} B' & A = |_{\text{planter}} |_{\text{planter}} B' \\ C_{|_{\text{planter}}|_{\text{planter}}} C_{|_{\text{planter}}|_{\text{planter}}} D & |_{\text{planter}} C_{|_{\text{planter}}} D & |_{\text{planter}} C_{|_{\text{planter}}} D & |_{\text{planter}} \\ P_{|_{\text{planter}}} D & |_{\text{planter}} C_{|_{\text{planter}}} D & |_{\text{planter}} \\ P_{|_{\text{planter}}} D & |_{\text{planter}} C_{|_{\text{planter}}} D & |_{\text{planter}} \\ P_{|_{\text{planter}}} D & |_{\text{planter}} D & |_{\text{planter}} D & |_{\text{planter}} \\ P_{|_{\text{planter}}} D & |_{\text{planter}} D & |_{\text{planter}} D & |_{\text{planter}} \\ P_{|_{\text{planter}}} D & |_{\text{planter}} D & |_{\text{planter}} D & |_{\text{planter}} D & |_{\text{planter}} \\ P_{|_{\text{planter}}} D & |_{\text{planter}} D & |_$$

left/right Add content, typically fences, around the simple align.

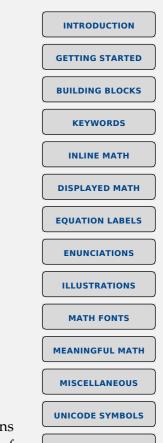
```
\startformula
  \startSA
  [fences=doublebar]
  \NC A \NC = B \NR
  \NC C \NC = D \NR
  \stopSA
  \stopformula
```

\startformula \startSA


 $\ A \ B \ NR$

$$\begin{vmatrix} A = B \\ C = D \end{vmatrix}$$

INTRODUCTION **GETTING STARTED BUILDING BLOCKS KEYWORDS INLINE MATH DISPLAYED MATH EQUATION LABELS ENUNCIATIONS** ILLUSTRATIONS MATH FONTS **MEANINGFUL MATH MISCELLANEOUS** UNICODE SYMBOLS SETUPS **BIBLIOGRAPHY**


```
INTRODUCTION
        NC C NC = D NR
      \stopSA
                                                                                                        GETTING STARTED
      \quad
      \startSA
                                                                                                        BUILDING BLOCKS
         [left=\startmathfenced[cases],
                                                                                                           KEYWORDS
          right=\stopmathfenced]
        NC A NC = B NR
                                                                                                          INLINE MATH
        NC C NC = D NR
      \stopSA
                                                                                                        DISPLAYED MATH
      \quad
                                                                                                        EQUATION LABELS
      \startSA
         [left=\left.,
                                                                                                         ENUNCIATIONS
         right=\right\rbracket]
        NC A NC = B NR
                                                                                                         ILLUSTRATIONS
        NC C NC = D NR
      \stopSA
                                                                                                          MATH FONTS
   \stopformula
                                                                                                        MEANINGFUL MATH
                                  \begin{array}{l} A = B \\ C = D \end{array} \begin{cases} A = B \\ C = D \end{array} A = B \\ C = D \\ C = D \end{cases} 
                                                                                                         MISCELLANEOUS
                                                                                                        UNICODE SYMBOLS
   The period in \left. represents an empty slot and is needed for pairing.
leftmargin/rightmargin Set extra space before or after the simple align.
                                                                                                            SETUPS
```

\startformula
 f(x) +

location Anchor the construction in different places.

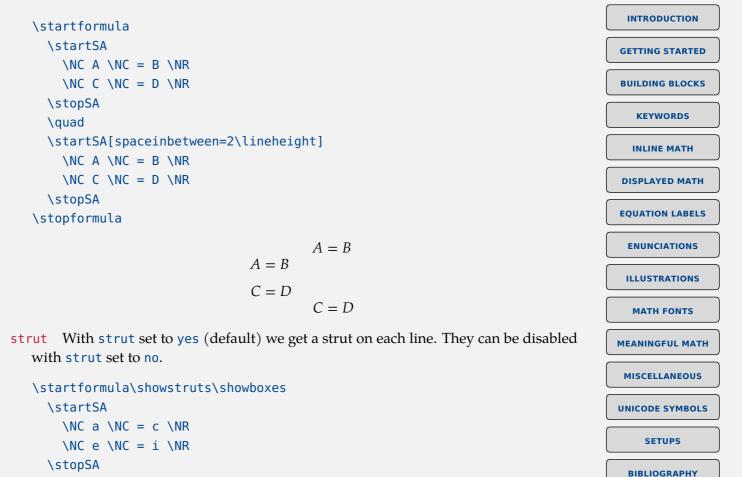
\startformula

SETUPS

BIBLIOGRAPHY

\stopSA
\quad
\startSA[location=top]
 \NC A \NC = B \NR
 \NC C \NC = D \NR
\stopSA
\quad
\startSA[location=bottom]
 \NC A \NC = B \NR
 \NC C \NC = D \NR
 \StopSA
\stopformula

\mathaxisbelow


 $\NC A \NC = B \NR$ $\NC C \NC = D \NR$

\startSA

A = B A = B C = D C = D C = D


simplecommand Specify a command to use. Then commas are used to separate columns and semicolons to separate lines. This is only meant to be used with systems of equations.

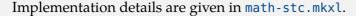
spaceinbetween Specify the space between rows.

\qquad

\startSA[strut=no]
 \NC a \NC = c \NR
 \NC e \NC = i \NR
 \stopSA
 \stopformula

text/textdistance Add text comments to the simple align.

```
\startformula
  \startSA[text=foo]
    \NC A \NC = B \NR
    \NC C \NC = D \NR
  \stopSA
  \qquad
  \startSA[text=foo,textdistance=2\emwidth]
    \NC A \NC = B \NR
    \NC C \NC = D \NR
    \stopSA
  \stopformula
```


$$A = B A = B foo C = D foo$$

INTRODUCTION **GETTING STARTED BUILDING BLOCKS KEYWORDS INLINE MATH DISPLAYED MATH EQUATION LABELS ENUNCIATIONS** ILLUSTRATIONS MATH FONTS **MEANINGFUL MATH MISCELLANEOUS** UNICODE SYMBOLS SETUPS **BIBLIOGRAPHY**

3.14 Stackers

\definemathstackers
$$[\stackrel{1}{\ldots}] \quad [\stackrel{2}{\ldots} \stackrel{2}{\ldots}] \quad [\ldots, \ldots \stackrel{3}{=} \ldots, \ldots]$$

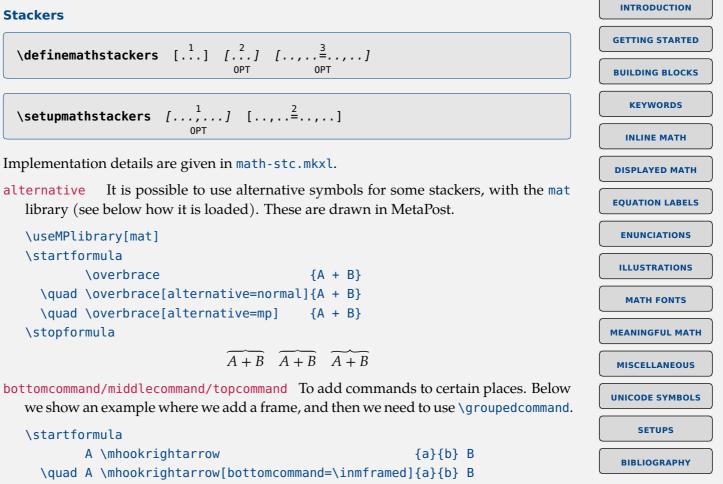
setupmathstackers
$$[\ldots, 1, \ldots]$$
 $[\ldots, 2^2, \ldots]$

It is possible to use alternative symbols for some stackers, with the mat alternative library (see below how it is loaded). These are drawn in MetaPost.

```
\useMPlibrary[mat]
\startformula
       \overbrace
 \quad \overbrace[alternative=normal]{A + B}
  \quad \overbrace[alternative=mp] {A + B}
```

A \mhookrightarrow

\stopformula


\startformula

$$\overrightarrow{A+B}$$
 $\overrightarrow{A+B}$ $\overrightarrow{A+B}$

\quad A \mhookrightarrow[bottomcommand=\inmframed]{a}{b} B

 ${A + B}$

{a}{b} B

\quad A \mhookrightarrow[middlecommand=\inmframed]{a}{b} B
\quad A \mhookrightarrow[topcommand=\inmframed] {a}{b} B
\stopformula

а	а	а	a
$A \hookrightarrow B$	$A \hookrightarrow B$	$A \hookrightarrow B$	$A \rightleftharpoons B$
b	b	$A \stackrel{a}{\underset{b}{\hookrightarrow}} B$	b

In this particular case, the spacing is not optimal, some extra space between the framed content and the arrow can be inserted with help of the voffset key. You might notice that the middlecommand is not doing anything. That depends on the type of stacker. Below is an example where it has an effect.

\startformula

\overbraceunderbrace

 $\{1 + 2 + 3\}$

Change the color of the

R

\quad \overbraceunderbrace[middlecommand=\inmframed]{1 + 2 + 3}
\stopformula

$$1+2+3$$
 $1+2+3$

color/bottomcolor/middlecolor/topcolor/symbolcolor
 stacked pieces.

\startformula

A ∖mhookrightarrow	{a}{b}
--------------------	--------

\quad A \mhookrightarrow[color=C:3] {a}{b} B

\quad A \mhookrightarrow[bottomcolor=C:3]{a}{b} B

\quad A \mhookrightarrow[middlecolor=C:3]{a}{b} B

\quad A \mhookrightarrow[topcolor=C:3] {a}{b} B

KEYWORDS

DISPLAYED MATH

INTRODUCTION

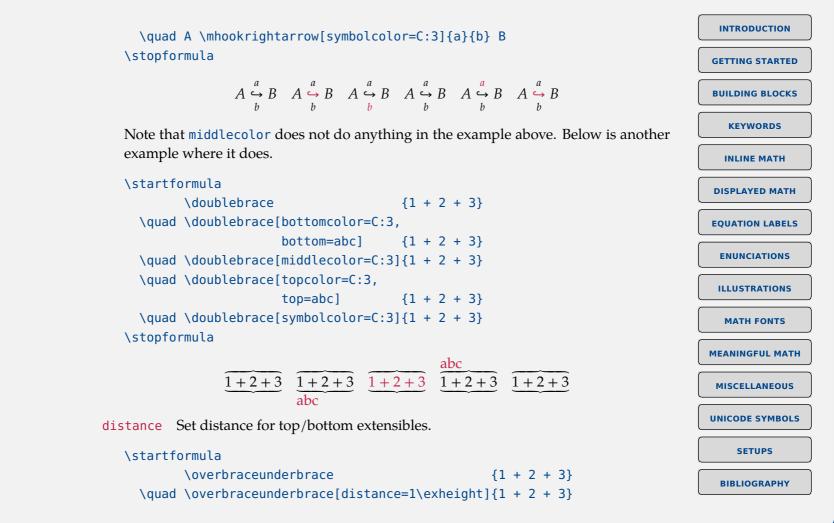
GETTING STARTED

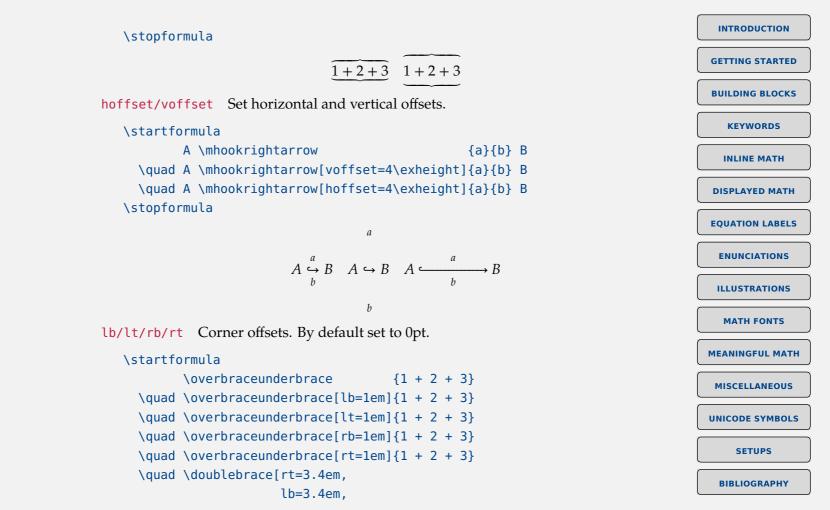
BUILDING BLOCKS

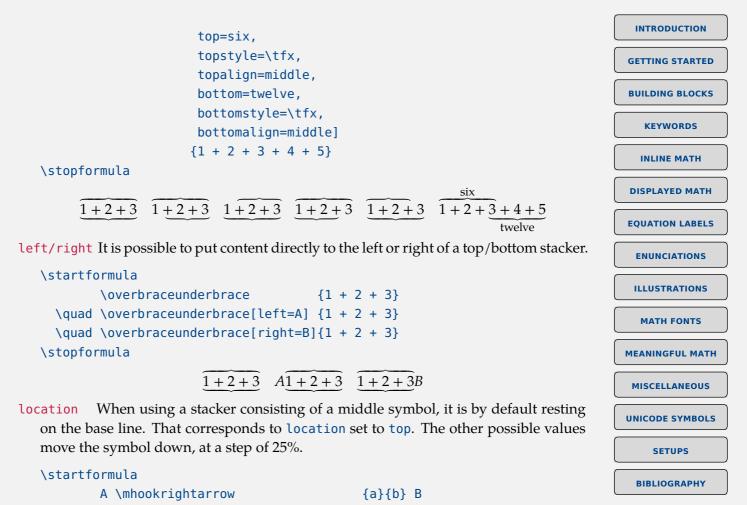
EQUATION LABELS

ENUNCIATIONS

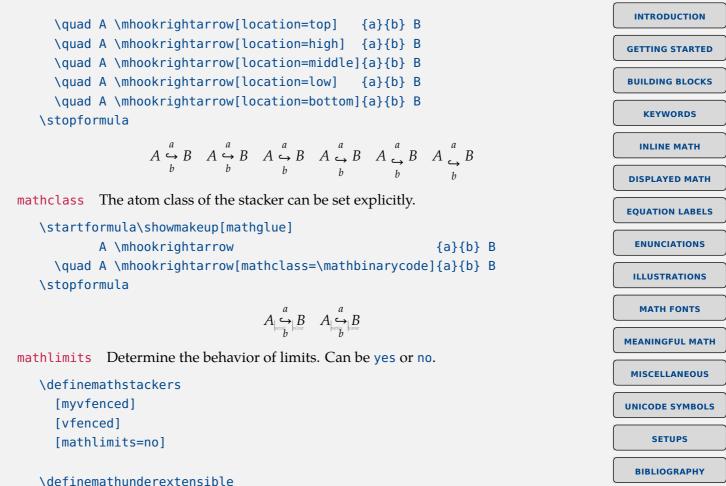
ILLUSTRATIONS


MATH FONTS


MEANINGFUL MATH


MISCELLANEOUS

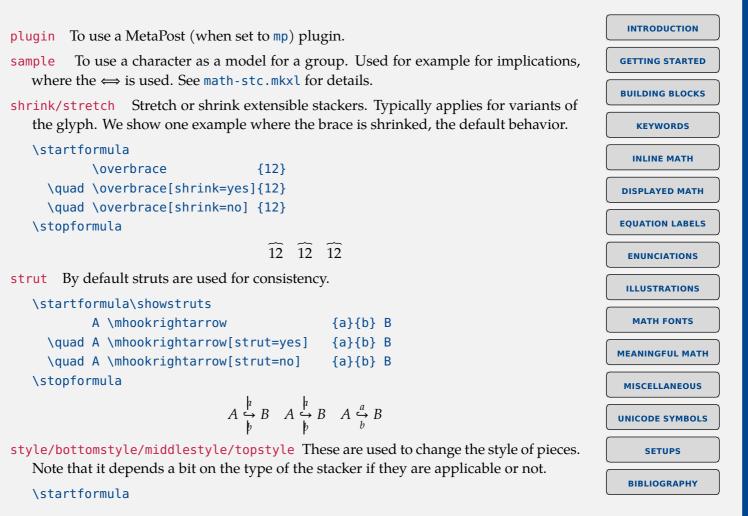
UNICODE SYMBOLS


SETUPS

218

INTRODUCTION [myvfenced] [myunderbar] **GETTING STARTED** ["203E] **BUILDING BLOCKS** \startformula **KEYWORDS** $\ \ b\} c = \ wunderbar{a + b} c$ \stopformula **INLINE MATH** $\underline{a+b} = \underline{a+b}_c$ **DISPLAYED MATH** mindepth/minheight/minwidth These will guarantee some minimal lengths. **EQUATION LABELS** \startformula A \mhookrightarrow {a}{b} B **ENUNCIATIONS** \quad A \mhookrightarrow[mindepth=2\exheight] {a}{b} B **ILLUSTRATIONS** \quad A \mhookrightarrow[minheight=3\exheight]{a}{b} B \quad A \mhookrightarrow[minwidth=2\emwidth] {a}{b} B MATH FONTS \stopformula **MEANINGFUL MATH** $A \stackrel{a}{\hookrightarrow} B \qquad A \stackrel{a}{\longleftrightarrow} B$ MISCELLANEOUS UNICODE SYMBOLS mp/mpheight/mpdepth/mpoffset Parameters to use for MetaPost stackers (when using alternative=mp). See meta-imp-mat.mkiv for further details. SETUPS

offset You can try min, max or normal, and then there is a challenge to explain what they do!

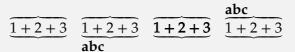

\startformula	
\overbraceunderbrace ${1 + 2 + 3}$	GETTING STARTED
<pre>\overbraceunderbrace[offset=normal]{1 + 2 + 3}</pre>	
$\operatorname{verbraceunderbrace[offset=min]} {1 + 2 + 3}$	BUILDING BLOCKS
<pre>\overbraceunderbrace[offset=max] {1 + 2 + 3}</pre>	
\breakhere	KEYWORDS
<pre>\overbraceunderbrace[offset=normal,hoffset=3TS]{1 + 2 + 3}</pre>	
<pre>\overbraceunderbrace[offset=min,hoffset=3TS] {1 + 2 + 3}</pre>	
<pre>\overbraceunderbrace[offset=max,hoffset=3TS] {1 + 2 + 3}</pre>	DISPLAYED MATH
\stopformula	
	EQUATION LABELS
1+2+3 $1+2+3$ $1+2+3$ $1+2+3$ $1+2+3$	
$\overbrace{1+2+3} 1+2+3 1+2+3$	ENUNCIATIONS
	ILLUSTRATIONS
order Due to different conventions it might be good to be able to swap the argument that	
goes above with the one that goes below. The order key can be normal (first argument	MATH FONTS
above, second below) and reverse (first argument below, second above).	

\startformula

A	<pre>\mhookrightarrow</pre>	{a}{b}	В
A	<pre>\mhookrightarrow[order=normal]</pre>	$a{b}$	В
A	<pre>\mhookrightarrow[order=reverse]</pre>	{a}{b}	В
\stopform	ula		

$$A \stackrel{a}{\hookrightarrow} B \qquad A \stackrel{a}{\hookrightarrow} B \qquad A \stackrel{b}{\hookrightarrow} B \qquad A \stackrel{b}{\hookrightarrow} I$$

MEANINGFUL MATH MISCELLANEOUS UNICODE SYMBOLS SETUPS **BIBLIOGRAPHY**



\quad \doublebrace[topstyle=bold,

top=abc] $\{1 + 2 + 3\}$

\stopformula

bottomalign/topalign Align the text above or below.

\startformula

INTRODUCTION

GETTING STARTED

BUILDING BLOCKS

KEYWORDS

INLINE MATH

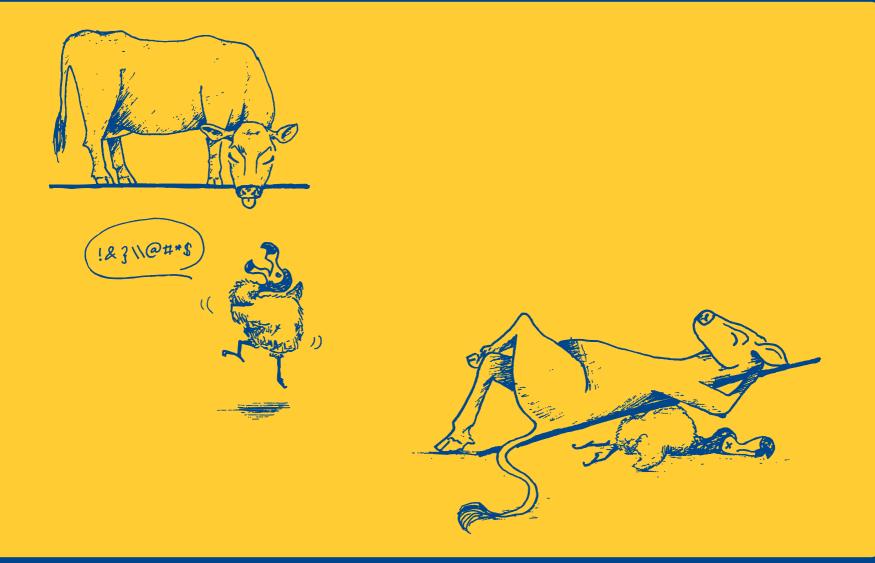
DISPLAYED MATH

EQUATION LABELS

ENUNCIATIONS

ILLUSTRATIONS

MATH FONTS


MEANINGFUL MATH

MISCELLANEOUS

UNICODE SYMBOLS

SETUPS

	$\column{black} \label{eq:loss} eq:los$	INTRODUCTION
	<pre>\doublebrace[bottomalign=middle,</pre>	GETTING STARTED
	bottom=abc] $\{1 + 2 + 3\}$	
	<pre>\doublebrace[bottomalign=flushright,</pre>	BUILDING BLOCKS
	bottom=abc] $\{1 + 2 + 3\}$	
	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	KEYWORDS
	\doublebrace[topalign=middle,	INLINE MATH
	top=abc] $\{1 + 2 + 3\}$	
	<pre>\doublebrace[topalign=flushright,</pre>	DISPLAYED MATH
	top=abc] $\{1 + 2 + 3\}$	
\stopfor	mula	EQUATION LABELS
	abc abc abc	ENUNCIATIONS
	$\overline{1+2+3}$ $\overline{1+2+3}$ $\overline{1+2+3}$ $\overline{1+2+3}$ $\overline{1+2+3}$ $\overline{1+2+3}$ $\overline{1+2+3}$	
	abc abc abc	ILLUSTRATIONS
topoffset	Can be used as a poor man's italic correction. By default set to 0.4em.	
\ dectopy		MATH FONTS
	/iserecurse{-10}{10}{1}{ omathstackers	MEANINGFUL MATH
	ibol]	
	poffset=\numexpr\recurselevel/10\emwidth]	MISCELLANEOUS
\1III {\ }	<pre>interiorset {A}}</pre>	UNICODE SYMBOLS
		SETUPS
ÂĂĂ	$\stackrel{\circ}{A}$	SETUPS

4 Inline math

4.1 Introduction

In the previous chapters we have discussed how to enter the different math modes and how to access various symbols, alphabets and other constructions. Now it is time to discuss typesetting of inline formulas in more detail. We will focus on how these formulas interplay with the surrounding text and paragraphs and how we can configure that, as well as some things to think about when typing inline formulas. This material covered in this chapter is complex, and the normal user can skip it (but Section 4.5 includes some general suggestions on setting inline fractions) and still be fine, since the default setups should work well.

We first discuss line breaking. The problem here is that for the rather advanced paragraph builder of T_EX to succeed to typeset nice paragraphs when math is involved, we sometimes need to break these formulas. It is impossible to make a general set up that will always lead to good line breaks, the user should expect some rewriting or manual juggling. Line breaks in mathematics can be controlled via penalties, and we will show several possible ways to do so.

To prevent lines from spreading, one usually needs to prevent inline formulas from being too tall. We will present the profiling mechanism in ConT_EXt that sometimes can prevent lines from spreading, even though the formulas are slightly too tall, without a bad outcome. The user can also work to prevent the lines from spreading. One way to do so is to slash the fractions. This does not really have to do so much with ConT_EXt but is rather some general advice.

GETTING STARTED BUILDING BLOCKS KEYWORDS INLINE MATH DISPLAYED MATH EQUATION LABELS ENUNCIATIONS ILLUSTRATIONS MATH FONTS **MEANINGFUL MATH** MISCELLANEOUS UNICODE SYMBOLS SETUPS **BIBLIOGRAPHY**

INTRODUCTION

4.2 Breaking paragraphs into lines

The algorithm used by TEX to break paragraphs into lines, the Knuth–Plass algorithm, is rather complex. We will not discuss it in detail here, but if we want to understand the math configurations that we will discuss below, it will be good to understand some aspects of it, in particular the ones that have to do with mathematics. We start, however, with a paragraph borrowed from [CBB54], without any mathematics. The vertical bars indicate all possible break points.

The art of presenting printed mathematics has much in common with those of display advertising and window-dressing. Crowding is to be avoided; contrast can be used whether of formula against formula or of words against symbols; essential information ought not too often to be hidden away in the small type of inferiors and superiors.

Note that some of the possible breaking points are inside words, leading to hyphenation (disc) while others are before spaces (glue). Most of the breaks in the paragraph above will never happen; it would for example lead to a very underful first line if we broke after the first word, with a lot of empty space. TEX calculates badness of possible breakpoints and deactivate them 'on-the-fly' if they are too bad. We end up with a tree of possible breakpoints. With a normal set up (not as above) this tree is not so big, and from it the optimal choice (least demerits) can be found. For completeness we show below the actual values for the example paragraph above. In order of appearance, the columns stand for the line, the index of the possible breaking point, the parent index in the tree, the demerit values, the classification (that in ConTEXt (lmtx) can be set up to be more granular) and finally the type of breaking point.

INTRODUCTION **GETTING STARTED BUILDING BLOCKS KEYWORDS INLINE MATH DISPLAYED MATH** EQUATION LABELS **ENUNCIATIONS ILLUSTRATIONS** MATH FONTS **MEANINGFUL MATH** MISCELLANEOUS UNICODE SYMBOLS SETUPS **BIBLIOGRAPHY**

1	2	1	0	73	11889	loose	glue	5 431		
2		2	1	61	16930	loose	glue	6 431		
	1	3	1	44	27305	tight	glue			
3	2	4	3	23	28394	almosttight	glue	pass	: 4	demerits : 43818
4		5	4	8	43718	barelyloose	penalty	subpass	: 1	looseness : 0
		6	4	86	9037610	tight	penalty	subpasses	: 5	

The above paragraph was set with an infinite tolerance, which means that possible breakpoints are not discarded. Most of the possible breaking points indeed come with a very high demerits value. With the actual settings in this document, there are only a few breaking points left for the same paragraph:

The art of presenting printed mathematics has much in common with those of display advertising and window-dressing. Crowding is to be avoided; contrast can be used whether of formula against formula or of words against symbols; essential information ought not too often to be hidden away in the small type of inferiors and superiors.

This leads in the end to a smaller tree to use for selecting the best solution.

5 431 1 2 1 0 73 11889 loose glue 6 431 2 1 61 16930 loose glue 1 3 1 44 27305 tight glue 3 2 4 3 23 28394 almosttight glue 5 4 8 43718 barelyloose penalty subpass : 1 looseness : 6 4 86 9037610 tight penalty subpasses : 5

The example above does not involve any mathematics. Let us now consider one example (borrowed from the excellent book [Wei80]) that does.

INTRODUC	TION
GETTING ST	ARTED
BUILDING B	LOCKS
KEYWOF	RDS
	АТН
DISPLAYED	матн
EQUATION I	ABELS
ENUNCIAT	IONS
ILLUSTRAT	TIONS
MATH FO	NTS
MEANINGFU	LMATH
MISCELLAN	EOUS
UNICODE SY	MBOLS
SETUP	rs

If $\{z \in T\}$ is injective and $\{R(z,T)\}$ is continuous. If $\{z - T\}$ is injective and $\{R(z,T)\}$ is continuous, then $\{z \in S_2(z)\}$ and thus by Theorem 5.23(b) the set $\{D(R(z,T))\}$ = R(z-T) is dense in $\{H\}$; as $\{R(z,T)\}$ is closed, we have $\{R(z - T)\}$ is dense in $\{H\}$; as $\{R(z,T)\}$ is closed, we have $\{R(z - T)\}$ = D(R(z,T)) = H. If $\{R(z,T)\}$ = H and $\{Z \in T\}$, then $\{R(z - T)\}$ = $N(z^* - T^*)$ = $R(z - T)^{1}$ bot} = $\{0\}$; therefore $\{z - T\}$ is bijective, i.e., $\{z \in T\}$ is $\{rho(T)\}$. If $\{rho(T)\}$. If $\{rho(T)\}$ vector $\{rho(T)\}$ by Theorem 5.23(a).

The output with the settings in this document is given below.

If $z \in \rho(T)$ then z - T is injective and R(z, T) is continuous. If z - T is injective and R(z, T) is continuous, then $z \notin \sigma_p(T)$ and thus by Theorem 5.23(b) the set D(R(z, T)) = R(z - T) is dense in H; as R(z, T) is closed, we have R(z - 1) = D(R(z, T)) = H. If R(z, T) = H and $z \in \mathbb{R}_2$ then $N(z - 1) = N(z^* - 1) = R(z - 1)^{\perp} = \{0\}$; therefore z - T is bijective, i.e., $z \in \rho(T)$. If $Imz \neq 0$ then $z \in \rho(T)$ by Theorem 5.23(a).

901	veryloose	math		2	17	9	95	45863	loose	glue	4	33	19	23	543342	tight	penalty	
949	veryloose	glue		3	18	9	374	37627	barelyloose	glue	2	34	23	0	2613567	decent	penalty	MEAN
209	almostloose	disc		3	19	10	240	28961	loose	glue	5	35	24	232	1486111	veryloose	glue	MEAN
756	barelyloose	disc			20	9	240	39938	decent	glue		36	25	261	395691	veryloose	disc	
100	decent	glue			21	13	77	2336694	loose	penalty		37	25	113	337379	veryloose	disc	
100	decent	glue			22	12	77	2326338	barelyloose	penalty		38	26	204	135759	veryloose	glue	MISC
965	veryloose	disc		1	23	14	1	722842	decent	penalty		39	26	34	94399	almostloose	glue	
202	veryloose	disc	4	1	24	16	269	1427547	veryloose	penalty		40	26	88	1200063	decent	penalty	[
338	loose	glue		2	25	16	102	259750	veryloose	glue		41	26	97	100363	barelytight	glue	UNICO
325	veryloose	glue		4	26	17	200	89963	veryloose	glue		42	29	355	597261	almostloose	glue	<u> </u>
593	decent	glue			27	18	350	2221528	loose	penalty		43	30	352	1702871	decent	penalty	
389	barelyloose	glue			28	17	350	2224388	barelyloose	penalty		44	33	185	596367	veryloose	glue	
500	almostloose	glue		1	29	19	60	596361	loose	penalty		45	30	185	600415	decent	glue	
221	decent	glue		2	30	18	60	600271	decent	penalty		46	33	230	554018	almostloose	glue	
606	veryloose	math			31	19	259	1789686	decent	penalty		47	33	50	1650942	decent	penalty	BIB
206	veryloose	glue			32	18	259	1803888	tight	penalty		48	33	1	546166	barelytight	math	
	 49 09 56 00 00 65 02 38 25 93 89 00 21 06 	 49 veryloose opalinostloose barelyloose obecent decent veryloose loose loose veryloose decent second almostloose almostloose 	49 veryloose glue 09 almostloose disc 56 barelyloose disc 00 decent glue 00 decent glue 01 decent glue 02 veryloose disc 03 loose glue 03 decent glue 04 almostloose glue 05 veryloose glue 04 almostloose glue 05 veryloose glue 06 veryloose math	49 veryloose glue 09 almostloose disc 56 barelyloose disc 00 decent glue 00 decent glue 00 decent glue 01 decent glue 02 veryloose disc 03 loose glue 93 decent glue 93 decent glue 90 almostloose glue 12 decent glue 06 veryloose math	49 veryloose glue 3 09 almostloose disc 3 56 barelyloose disc 3 00 decent glue 4 00 decent glue 4 01 veryloose disc 1 02 veryloose glue 4 03 baceyloose glue 2 25 veryloose glue 4 93 decent glue 4 93 decent glue 1 00 almostloose glue 1 12 decent glue 1 12 decent glue 2 06 veryloose glue 2	49 veryloose glue 3 18 09 almostloose disc 3 19 56 barelyloose disc 20 00 decent glue 21 00 decent glue 22 65 veryloose disc 1 23 02 veryloose glue 4 1 24 38 loose glue 2 25 93 decent glue 27 89 barelyloose glue 28 00 almostloose glue 28 00 almostloose glue 2 21 decent glue 23 06 veryloose math 31	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		49 veryloose glue 3 18 9 374 37627 09 almostloose disc 3 19 10 240 28961 56 barelyloose disc 2 0 9 240 28961 00 decent glue 21 13 77 2336694 00 decent glue 22 12 17 2326338 65 veryloose disc 1 23 14 1 722842 02 veryloose glue 2 25 16 102 259750 25 veryloose glue 2 26 17 200 89963 93 decent glue 26 17 300 221528 89 barelyloose glue 28 17 300 224388 00 almostloose glue 2 18 60 600271 12 <t< td=""><td>49 veryloose glue 3 18 9 374 37627 barelyloose 09 almostloose disc 3 19 10 240 28961 loose 56 barelyloose disc 3 19 10 240 28961 loose 56 barelyloose disc 20 9 240 3938 decent 00 decent glue 21 13 77 236694 loose 00 decent glue 22 12 77 232638 barelyloose 65 veryloose disc 1 23 14 1 722842 decent 02 veryloose glue 2 25 16 102 259750 veryloose 38 loose glue 27 18 350 2221528 loose 93 decent glue 2 17 350 2224388 barelyloo</td><td></td><td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td><td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td><td></td><td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td><td>49 veryloose glue 3 18 9 374 37627 barelyloose glue 2 34 23 0 261367 09 almostloose disc 3 19 10 240 28961 loose glue 5 35 24 232 1486111 56 barelyloose disc 20 9 240 239938 decent glue 5 5 24 232 1486111 00 decent glue 2 12 77 2336694 loose penalty 37 25 13 37379 00 decent glue 2 12 17 72326338 barelyloose penalty 38 26 204 135759 02 veryloose disc 1 23 14 1 722842 decent penalty 40 26 88 1200063 25 veryloose glue 2</td><td>49 veryloose glue 3 18 9 374 37627 barelyloose glue 2 34 23 0 2613567 decent 09 almostloose disc 3 19 10 240 28961 loose glue 5 35 24 232 1486111 veryloose 56 barelyloose disc 20 9 240 39938 decent glue 36 25 261 395691 veryloose 00 decent glue 21 13 77 2336694 loose penalty 38 26 204 133779 veryloose 00 decent glue 21 17 2326338 barelyloose penalty 38 26 204 135759 veryloose 02 veryloose disc 1 24 16 269 1427547 veryloose glue 40 26 84 240003 decent 25 veryloose glue 4 26 17 200</td><td>49 veryloose glue 3 18 9 374 37627 barelyloose glue 2 34 23 0 2613567 decent penalty 09 almostloose disc 3 19 10 240 28961 loose glue 5 35 24 232 1486111 veryloose glue 3 18 9 374 37627 barelyloose glue 5 35 24 232 1486111 veryloose glue 3 18 9 374 379 8938 decent glue 36 25 261 395691 veryloose disc 37 25 113 37379 veryloose disc 37 25 13 37379 veryloose glue 40 26 84 94399 almostloose glue 26 34 94399 almostloose glue 25 veryloose disc 10 225770 veryloose glue 41 26 97 100363 barelytiose glue 25 597261<!--</td--></td></t<>	49 veryloose glue 3 18 9 374 37627 barelyloose 09 almostloose disc 3 19 10 240 28961 loose 56 barelyloose disc 3 19 10 240 28961 loose 56 barelyloose disc 20 9 240 3938 decent 00 decent glue 21 13 77 236694 loose 00 decent glue 22 12 77 232638 barelyloose 65 veryloose disc 1 23 14 1 722842 decent 02 veryloose glue 2 25 16 102 259750 veryloose 38 loose glue 27 18 350 2221528 loose 93 decent glue 2 17 350 2224388 barelyloo		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	49 veryloose glue 3 18 9 374 37627 barelyloose glue 2 34 23 0 261367 09 almostloose disc 3 19 10 240 28961 loose glue 5 35 24 232 1486111 56 barelyloose disc 20 9 240 239938 decent glue 5 5 24 232 1486111 00 decent glue 2 12 77 2336694 loose penalty 37 25 13 37379 00 decent glue 2 12 17 72326338 barelyloose penalty 38 26 204 135759 02 veryloose disc 1 23 14 1 722842 decent penalty 40 26 88 1200063 25 veryloose glue 2	49 veryloose glue 3 18 9 374 37627 barelyloose glue 2 34 23 0 2613567 decent 09 almostloose disc 3 19 10 240 28961 loose glue 5 35 24 232 1486111 veryloose 56 barelyloose disc 20 9 240 39938 decent glue 36 25 261 395691 veryloose 00 decent glue 21 13 77 2336694 loose penalty 38 26 204 133779 veryloose 00 decent glue 21 17 2326338 barelyloose penalty 38 26 204 135759 veryloose 02 veryloose disc 1 24 16 269 1427547 veryloose glue 40 26 84 240003 decent 25 veryloose glue 4 26 17 200	49 veryloose glue 3 18 9 374 37627 barelyloose glue 2 34 23 0 2613567 decent penalty 09 almostloose disc 3 19 10 240 28961 loose glue 5 35 24 232 1486111 veryloose glue 3 18 9 374 37627 barelyloose glue 5 35 24 232 1486111 veryloose glue 3 18 9 374 379 8938 decent glue 36 25 261 395691 veryloose disc 37 25 113 37379 veryloose disc 37 25 13 37379 veryloose glue 40 26 84 94399 almostloose glue 26 34 94399 almostloose glue 25 veryloose disc 10 225770 veryloose glue 41 26 97 100363 barelytiose glue 25 597261 </td

GETTING STARTED
BUILDING BLOCKS
KEYWORDS
INLINE MATH
DISPLAYED MATH
EQUATION LABELS
ENUNCIATIONS
ILLUSTRATIONS
MATH FONTS
MEANINGFUL MATH
MISCELLANEOUS
UNICODE SYMBOLS
SETUPS
BIBLIOGRAPHY

	49 34	0	2623667	decent	penalty 4	0 26 17 9 2	48 33 19 10 5	1
	50 34	38	2740871	almosttight	disc 4	1 26 17 9 2	49 34 23 14 5	
					4	2 29 19 10	5 50 34 23 14 5	
35	$24\ 16\ 7\ 1$				4	3 30 18 9 2		G
36	251671				4	4 33 19 10	5 pass : 4 demerits : 96999	
37	251671				4	5 30 18 9 2	subpass : 2 looseness : 0	
38	26 17 9 2				4	6 33 19 10	5 subpasses : 5	BU
39	26 17 9 2				4	7 33 19 10	5	

We see a new type of line break, inside formulas (penalty). Automatic line breaks inside formulas have in T_EX always been restricted to *after* relation and binary operator atoms; in contrast with text, line breaks in math are not permitted at glue. The penalties (\relpenalty and \binoppenalty) have usually been set to 500 and 700, respectively; a small preference for breaking after relations. Note that we do not only have a few possible breaks inside math, some of them are in fact realized, in spite of the added penalty. (Hyphenation breaks also come with a penalty, but we will not discuss that here.)

If we do not allow any breaks in mathematics (by setting the corresponding penalties to 10000), then T_EX will in this example paragraph not find any good solution. This results in an overful hbox, with one of the longer formulas sticking out in the margin.

If $z \in \rho(T)$ then z - T is injective and R(z, T) is continuous. If z - T is injective and R(z, T) is continuous, then $z \notin \sigma_p(T)$ and thus by Theorem 5.23(b) the set D(R(z, T)) = R(z - T) is dense in H; as R(z, T) is closed, we have R(z - T) = D(R(z, T)) = H. If R(z, T) = H and $z \in \mathbb{R}_d$ then $N(z - T) = N(z^* - T^*) = R(z - T)^{\perp} = \{0\}$; therefore z - T is bijective i.e., $z \in \rho(T)$. If $Imz \neq 0$, then $z \in \rho(T)$ by Theorem 5.23(a).

That looks bad; line breaking inside formulas is a "necessary evil". The way to set it up is to use penalties. We will use the same paragraph to discuss and show a few settings we can do in $ConT_EXt$. First we show the paragraph with the penalties attached, with the

GETTING STARTED
BUILDING BLOCKS
KEYWORDS
INLINE MATH
DISPLAYED MATH
EQUATION LABELS
ENUNCIATIONS
ILLUSTRATIONS
MATH FONTS
MEANINGFUL MATH
MISCELLANEOUS
UNICODE SYMBOLS
SETUPS
BIBLIOGRAPHY

longstanding "default" setting of only allowing breaks after relations (with penalty 500) and binary operators (penalty 700).

If $z \in \rho(T)$ then z - T is injective and R(z, T) is continuous. If z - T is injective and R(z, T) is continuous. If z = T is injective and R(z, T) is continuous, then $z \notin \sigma_p(T)$ and thus by Theorem 5.23(b) the set D(R(z, T)) = R(z - T) is dense in H; as R(z, T) is closed, we have R(z - T) = D(R(z, T)) = M. If R(z, T) = H and $z \in \mathbb{R}$, then $N(z - T) = N(z^* - T^*) = R(z - T)^{\perp} = \{0\}$; therefore z - T is bijective, i.e., $z \in \rho(T)$. If $Imz \neq 0$, then $z \in \rho(T)$ by Theorem 5.23(a).

The gray boxes show the penalties that are relevant for us (the other ones are connected with widows and orphans). We see that it is by default always a 0 penalty before and after a formula, and indeed a penalty of 500 after relations and 700 after binary operators. Before we continue the discussion, let us emphasize that after experimenting with different values (and in fact also different models for calculation of badness and demerits), we have concluded that the quality from the values used since plain T_EX are not so easy to improve. But we believe that some flexibility, described below, might improve the situation slightly.

It is considered non-optimal to break a formula just before a one character formula. We find a lonely *H* in our example paragraph. One way to avoid having a line break before it is to insert what is called a tie, a non-breakable space just before the formula. This can be done with \penalty10000, but often also as ~. The 10000 penalty will prohibit a line break. One can imagine situations where one has to choose between a line break before a singleton and a bad break inside a longer formula. For this reason, we believe that it is better to insert a smaller penalty, and to do it automatically. We can do that with \preshortinlinepenalty. By default it is set to 150.

If $z \in \rho(T)$ then z - T is injective and R(z, T) is continuous. If z - T is injective and R(z, T) is continuous, then $z \notin \sigma_p(T)$ and thus by Theorem 5.23(b) the set D(R(z, T)) = R(z - T) is dense in H; as R(z, T) is closed, we have R(z - T) = D(R(z, T)) = H. If R(z, T) = H and $z \in \mathbb{R}$, then $N(z - T) = N(z^* - T^*) = R(z - T)^{\perp} = \{0\}$; therefore z - T is bijective, i.e., $z \in \rho(T)$. If $\operatorname{Im} z \neq 0$, then $z \in \rho(T)$ by Theorem 5.23(a).

Next, one could consider to open up and allow lines to break also before and after other atom classes than relation and binary operator. This is indeed possible to do for any atom class in ConT_EXt. In a general setup it does not prove to be too useful. With

```
\setmathpostpenalty\mathvariablecode500
\setmathpostpenalty\mathordinarycode500
\setmathpostpenalty\mathdigitcode500
```

we allow breaks after variable, ordinary and digit atoms, adding a penalty of 500. This results in a very bad break.

If $z \in \rho(T)$ then z - T is injective and R(z, T) is continuous. If z - T is injective and R(z, T) is continuous, then $z \notin \sigma_p(T)$ and thus by Theorem 5.23(b) the set D(R(z, T)) = R(z - T) is dense in H; as R(z, T) is closed, we have R(z - T) = D(R(z, T)) = H. If R(z, T) = H and $z \in \mathbb{R}$, then $N(z - T) = N(z^* - T^*) = R(z - T)^{\perp} = \{0\}$; therefore z - T is bijective, i.e., $z \in \rho(T)$. If $\operatorname{Im} z \neq 0$, then $z \in \rho(T)$ by Theorem 5.23(a).

To add a penalty before an atom class \setmathpostpenalty is used. By default, we follow the traditional setup, only the penalties after relations and binary operators are set to finite values. There is, however, a third class that has a value set, punctuation is set to 10000, which as we know can be seen as infinity. There is a finesse about this, though. Say that we want to define some macro that likely will involve several commas, like a tuple. If one uses many such constructions in a paragraph, it might be difficult to find breakpoints, since in an expression like (1, 2, 3, 4, 5, 6, 7, 8, 9) there is nowhere to break. It is then possible to use a so-called math nesting.

\definemathnesting[tuple][left=(,right=),inlinefactor=500]

Now $\{(a,b,c) + (tuple\{1,2,3\} + (p,q,r)\}$ gives (a,b,c) + (1,2,3) + (p,q,r). Here the 10000 penalty after the commas have become 5000. Still not a wanted break point, but it might be better than nothing.

There is in fact yet another mechanism enabled that sometimes change the default penalties after relations and binary operators. There is a multiplier \mathinlinepenaltyfactor, by default set to 1500. It will keep control of fences and multiply the penalties inside them.

If $z \in \rho(T)$ then z - T is injective and R(z, T) is continuous. If z - T is injective and R(z, T) is continuous, then $z \notin \sigma_p(T)$ and thus by Theorem 5.23(b) the set D(R(z, T)) = R(z - T) is dense in H; as R(z, T) is closed, we have R(z - T) = D(R(z, T)) = H. If R(z, T) = H and $z \in \mathbb{R}$, then $N(z - T) = N(z^* - T^*) = R(z - T)^{\perp} = \{0\}$; therefore z - T is bijective, i.e., $z \in \rho(T)$. If $\operatorname{Im} z \neq 0$, then $z \in \rho(T)$ by Theorem 5.23(a).

The binary operator penalties appearing inside parentheses have been multiplied by 1.5, and are now $700 \times 1.5 = 1050$.

We mention one more method to control line breaks in math. In a long formula it might be considered better to break somewhere in the middle rather than at the very beginning or very end. This can be done with \mathforwardpenalties and \mathbackwardpenalties:

INTRODUCTION
GETTING STARTED
BUILDING BLOCKS
KEYWORDS
INLINE MATH
DISPLAYED MATH
EQUATION LABELS
ENUNCIATIONS
ILLUSTRATIONS
MATH FONTS
MEANINGFUL MATH
MISCELLANEOUS
UNICODE SYMBOLS
SETUPS
BIBLIOGRAPHY

\mathforwardpenalties 3 200 100 50 \mathbackwardpenalties 3 200 100 50

This will add 200 to the outermost penalty, 100 to the next one and 50 to the third (if available). Since we add penalties at the boundaries of formulas, we lower the penalties after the relation and binary operators, and set them to 400 and 600, respectively.

If $z \in \rho(T)$ then z - T is injective and R(z, T) is continuous. If z - T is injective and R(z, T) is continuous, then $z \notin \sigma_p(T)$ and thus by Theorem 5.23(b) the set D(R(z, T)) = R(z - T) is dense in H; as R(z, T) is closed, we have R(z - T) = D(R(z, T)) = H. If R(z, T) = H and $z \in \mathbb{R}_t$ then $N(z - T) = N(z^* - T^*) = R(z - T)^{\perp} = \{0\}$; therefore z - T is bijective, i.e., $z \in \rho(T)$. If $\operatorname{Im} z \neq 0$, then $z \in \rho(T)$ by Theorem 5.23(a).

Note that now the penalty after the \in in the first formula $z \in \rho(T)$ is 400 + 200 + 200 = 800, while it for the minus in the second formula z - T is 600 + 200 + 200 = 1000. For the longer formulas, > in front of the penalty helper indicate that the forward penalty is applied, < that the backwards penalty is applied, and = that both are applied. Note the ordering of the different applications. For example we see in N(z - T) at the beginning of a formula a 1100 after the minus. That comes from $600 \times 1.5 + 200$. So, the forward and backward penalties are added *after* we have compensated for being inside the parentheses.

4.3 What do others say on the breaking of inline formulas?

The breaking of inline formulas over several lines is an interesting and rather complex topic. In fact, it should not be something that the user should need to have in mind while typing, but it is good to know something about it. Let us therefore start with a small historical background.

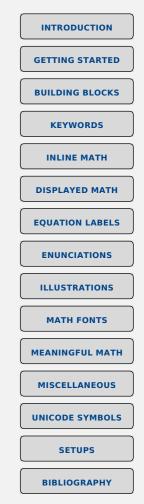
INTRODUCTION **GETTING STARTED BUILDING BLOCKS KEYWORDS INLINE MATH DISPLAYED MATH** EQUATION LABELS **ENUNCIATIONS ILLUSTRATIONS** MATH FONTS **MEANINGFUL MATH** MISCELLANEOUS UNICODE SYMBOLS SETUPS **BIBLIOGRAPHY**

The simplest rule is to be find in [CBB54]: "Undisplayed formulae (that is, formulae run in as part of the text) must never be broken at the end of a line."

In [Lan61] there is a discussion on the issue that runs over three pages, and except that it gives several examples, it can be summarized as follows. It is strongly suggested to change the wording or the word spacing locally to avoid line breaks in formulas. If that does not help it is suggested to display the formula that has to be broken, if it is not too short, or if it does not lead to an unbalanced emphasizing of the formula. If neither of these solutions are possible, it is suggested that one breaks the formula according to the priority below.

Let us develop their reasoning a bit. The best place to divide the formula is after a comma or other punctuation where the formula is already naturally divided. In fact, it is even suggested that this is not a problem at all in cases as $f(x) = x^2$, $x \in \mathbb{R}$, where the comma is not really a part of one of the formulas, but one can assume that they do not want to break after the comma in f(x, y). The next best solution is to divide the formula after a verb like the equal sign, the third best is after a binary operator like plus. Except for these, breaks are really considered to be bad, but it goes on. The fourth best is to divide after a multiplication or division. In case of a multiplication like (a + b)(c + d) no multiplication sign should be printed, but in the case of division (a + b)/(c + d) one should have (a + b)/ on the first line and (c + d) on the second. The last three options are considered very bad.

If it is not possible to break the formula according to the list above, the manual also says it is forbidden to do so after functions like sin or after operators like \sum or \int .


INTRODUCTION GETTING STARTED **BUILDING BLOCKS KEYWORDS INLINE MATH DISPLAYED MATH EQUATION LABELS ENUNCIATIONS ILLUSTRATIONS** MATH FONTS **MEANINGFUL MATH** MISCELLANEOUS UNICODE SYMBOLS SETUPS **BIBLIOGRAPHY**

In [Swa99] the topic is covered in Sections 3.3 and 3.4. Seven rules are formulated. They are more or less in agreement with the rules given by Lansburgh, but they are not given any clear priority. Instead of formulating the rules in [Swa99], let us point out some differences between them and [Lan61]. A noticeable one is that line breaks are allowed not only after, but also *before* verbs like = and conjunctions like +. Also, if breaking a product (a + b)(c + d) into (a + b) and (c + d) (something that we usually do not allow), it is suggested that a multiplication sign $(\cdot \text{ or } \times)$ is inserted on the second line. In the formulas x(a + b + c), (a + b - c)y and $\sum (a + b - c)$ it is written that no break should be allowed. Also, no breaks are allowed between the integral \int and the differential dx.

4.4 Tall mathematics in paragraphs

Tall mathematical expressions in inline mathematics is a problem, since they will cause an uneven space between lines in paragraphs. One way to avoid the problem is to use smaller symbols when available, like \int instead of \int (this will automatically be the case if one starts inline math and uses \int). On the other hand, in some formulas the letters might become too small. We do not want to use a big fraction like $\frac{a}{b}$ in inline formulas, since that will spread the lines, but the $\frac{a}{b}$ (that we get from \frac{a}{b} in inline math mode) looks too cramped; the small letters will decrease the readability. That becomes even worse if we also add a superscript, $\frac{a^b}{c}$. Then we also risk the line to spread.

Some tall formulas might be transformed into displayed formulas, but when that happens too much, the text can become less readable. So, the question is what we should do? Tall formulas coming from fractions can be slashed, something that we will discuss in the next section. If we want to use too tall formulas, then there is not much to do. But for formulas

that are just a bit too tall, we can sometimes still reduce the lines without getting a bad result. Let us look at a maybe not to obvious example, borrowed from the book [SS98] that contains lots of nice math problems.

Problem 4.1.18 (Fa78) Let $M_{n \times n}$ be the vector space of real $n \times n$ matrices, identified with \mathbb{R}^{n^2} . Let $X \subset M_{n \times n}$ be a compact set. Let $S \subset \mathbb{C}$ be the set of all numbers that are eigenvalues of at least one element of X. Prove that S is compact.

Problem 4.1.18 (Fa78) Let $M_{n \times n}$ be the vector space of real $n \times n$ matrices, identified with \mathbb{R}^{n^2} . Let $X \subset M_{n \times n}$ be a compact set. Let $S \subset \mathbb{C}$ be the set of all numbers that are eigenvalues of at least one element of X. Prove that *S* is compact.

Maybe it is difficult to see the difference between these paragraphs. The tallest formula, \mathbb{R}^{n^2} introduces some extra space between the first two lines in the first paragraph. This space is, however, removed in the second. The mechanism behind this is *profiling*, which is enabled by invoking \setupalign[profile]. It will run over lines where extra line skip is needed, and look at the boxes. If the line skip can be reduced without the lines clashing, it will do so (one can set up the granularity). As often is the case in ConT_EXt, it is possible to enable a tracker to visualize this (the profiling.lines.show tracker). The same two paragraphs are typeset below. In the first one, where profiling is off we show the lines. In the second we show lines where profiling kicks in.

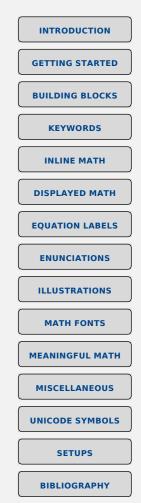
Problem 4.1.18 (**Fa78**) Let $M_{n \times n}$ be the vector space of real $n \times n$ matrices, identified with \mathbb{R}^{n^2} . Let $X \subset M_{n \times n}$ be a compact set. Let $S \subset \mathbb{C}$ be the set of all numbers that are eigenvalues of at least one element of X. Prove that S is compact.

INTRODUCTION **GETTING STARTED** BUILDING BLOCKS **KEYWORDS INLINE MATH DISPLAYED MATH** EQUATION LABELS **ENUNCIATIONS** ILLUSTRATIONS MATH FONTS **MEANINGFUL MATH** MISCELLANEOUS UNICODE SYMBOLS

SETUPS

Problem 4.1.18 (Fa78) Let $M_{n \times n}$ be the vector space of real $n \times n$ matrices, identified with \mathbb{R}^{n^2} . Let $X \subset M_{n \times n}$ be a compact set. Let $S \subset \mathbb{C}$ be the set of all numbers that are eigenvalues of at least one element of X. Prove that S is compact.

4.5 Slashing fractions


Fractions in inline formulas are problematic simply because they are tall by construction. We will below give many examples with some general advice, partly inspired by the 29(!) pages long discussion on fractions in [Lan61]. We have in mind that we want to avoid tall formulas that introduce extra line spread. Below, we will only show the output of examples, together with comments. We give suggestions both for display and inline formulas. It is often more difficult to get the inline version correct, and, as mentioned, we will often use a fraction slash instead of a fraction bar, i.e. we will *slash the fractions*.

In our first example we have fractions with numbers only. In display style math these can be set slightly smaller with \tfrac. In text style math they will automatically get the correct smaller size with \frac.

Display: $\frac{11}{19} + \frac{3}{19}\sqrt{5} - \frac{1}{19}\sqrt{7} - \frac{2}{19}\sqrt{5}\sqrt{7}$

Inline: $\frac{11}{19} + \frac{3}{19}\sqrt{5} - \frac{1}{19}\sqrt{7} - \frac{2}{19}\sqrt{5}\sqrt{7}$

If there is a fraction with only numbers, we can still set it with \tfrac, as in the first example below. This also applies if there are more terms with numeric fractions, as in the polynomial in the second example. If, however, there are some non-numeric fractions, as in the third example, we suggest to set that fraction (a/5 in the example) in display style. Then it is also natural to set the other fraction ($\frac{1}{8}$ in the example) in display style. Note

that we have slashed a/5 but not $\frac{1}{8}$ in the inline version. One could argue that it looks better with 1/8 as well.

Display:
$$\frac{1}{24}(L^2 + 4\pi^2) = \frac{3}{5}x^2 + 2x + \frac{1}{8} = \frac{a}{5}x^2 + 2x + \frac{1}{8}$$

Inline: $\frac{1}{24}(L^2 + 4\pi^2) \quad \frac{3}{5}x^2 + 2x + \frac{1}{8} \quad (a/5)x^2 + 2x + \frac{1}{8}$

With integer fractions in front of a big symbol, like an integral, big parentheses, or a sum, there is no meaning in keeping the fractions small in display math.

Display:
$$\frac{1}{2} \int_{0}^{2} f(\theta) \, d\theta \quad \frac{3}{5} \left(\frac{a}{b} - 1\right) \quad \frac{1}{2} \sum_{k=1}^{+\infty} \frac{1}{k^{2'}} \qquad \frac{1}{2} \log\left(\frac{x}{y}\right)$$

Inline:
$$\frac{1}{2} \int_0^2 f(\theta) \, d\theta = \frac{3}{5} (a/b - 1) = \frac{1}{2} \sum_{k=1}^{+\infty} \frac{1}{k^2} = \frac{1}{2} \log(x/y)$$

Here we have letter fractions that are simple in the sense that both numerator and denominator only has one term. Since there are letters, we shall not use a smaller style. This fixes the look in the display style. In text style, we must slash. The reason is that we do not want high fractions that forces a larger total line height, and we do not want to make the symbols smaller.

Display:
$$\frac{1}{2\pi}$$
 $x' = \frac{x}{|x|}$ $\frac{dy}{dx}$ $\left\lfloor \frac{n^2}{4} \right\rfloor$

Inline:
$$1/2\pi$$
 $x' = x/|x|$ dy/dx $\lfloor n^2/4 \rfloor$ or $\lfloor \frac{1}{4}n^2 \rfloor$

In the first example we slash and get $1/2\pi$. Could this be mixed up with $\frac{1}{2}\pi$? Yes, probably. But, if we think about how we read the formula out, "one over two π ", it makes sense to

INTRODUCTION

MEANINGFUL MATH

MISCELLANEOUS

UNICODE SYMBOLS

SETUPS

write $1/2\pi$. In cases where you want or need to, you can insert parentheses and write $1/(2\pi)$.

There is not much to say about the second and third examples. For the fourth, we can choose between $\lfloor n^2/4 \rfloor$ and $\lfloor \frac{1}{4}n^2 \rfloor$ (the fraction here is set with \frac). The important point is that the formulas do not change the height of the line.

Display:
$$\frac{\Gamma(\beta_1)\Gamma(\beta_2)\dots\Gamma(\beta_n)}{\Gamma(\beta_1+\beta_2+\dots+\beta_n)} \qquad \qquad \frac{1}{\zeta(s)}\sum_{n=1}^{+\infty}\frac{\mu(n)}{n^s}$$

Inline:
$$\Gamma(\beta_1)\Gamma(\beta_2)\dots\Gamma(\beta_n)/\Gamma(\beta_1+\beta_2+\dots+\beta_n) \quad [1/\zeta(s)]\sum_{n=1}^{+\infty}\mu(n)/n^s$$

With the examples above we only want to emphasize that the same idea applies even if the expressions in the fractions are a bit more complicated. If they get too long, however, they should be displayed. These two formulas are border cases.

In the second example we have two fractions that are both slashed, independently of each other. Note the added square brackets in the first of them.

Display:
$$\frac{1}{2\pi i} \frac{\partial f}{\partial x_j}$$
 $\frac{\sin^2 tu}{u^2}$ $\frac{1}{d_{\chi}} (\Lambda * M)$

Inline: $(1/2\pi i) \partial f/\partial x_j \quad (\sin^2 t u)/u^2 \quad (1/d_{\chi}) (\Lambda * \mathcal{M})$

In these examples we have inserted parentheses when slashing the fractions. We need no parentheses around the numerator (in the third example there are already parentheses, and we must not remove them!).

Display:
$$\frac{1}{2}(a+b)$$
 or $\frac{a+b}{2}$

Inline:
$$\frac{1}{2}(a+b)$$
 or $(a+b)/2$

In cases like these you have the freedom to choose, but be consistent throughout your document.

Display:
$$\sqrt{\frac{v}{\sigma}} \frac{dv}{\sigma}$$

Inline: $\sqrt{v/\sigma} \, dv/\sigma$

Square roots work as parentheses, so you do not need to insert any when slashing.

Display: $\frac{1}{n+1}$ $w = \frac{az+b}{cz+d}$ $\frac{F(t_i) - F(t_{i-1})}{t_i - t_{i-1}}$

Inline: 1/(n+1) w = (az+b)/(cz+d) $[F(t_i) - F(t_{i-1})]/(t_i - t_{i-1})$

When slashing fractions that are not simple (i.e. where the numerator and/or the denominator have more than one term), we will need to add parentheses. Note the square brackets in the third example above.

Display:
$$\frac{1}{n+1}B_{n+1}(x)$$
 $\frac{n!}{(n-2j)!(2j)!!}$ $\frac{B_1}{1+x} - \frac{B_2}{2(1+x)^2}$

Inline: $[1/(n+1)]B_{n+1}(x) \quad n!/[(n-2j)!(2j)!!] \quad B_1/(1+x) - B_2/[2(1+x)^2]$

In the first example the square brackets must be there. One could question them in the second example if one reads it as "*n*-factorial over …". If hesitant, add parentheses. The

third example consists of two terms, one where we only need ordinary parentheses, and one where we also need square brackets. The last term could equally well have been written as $-\frac{1}{2}B_2/(1+x)^2$.

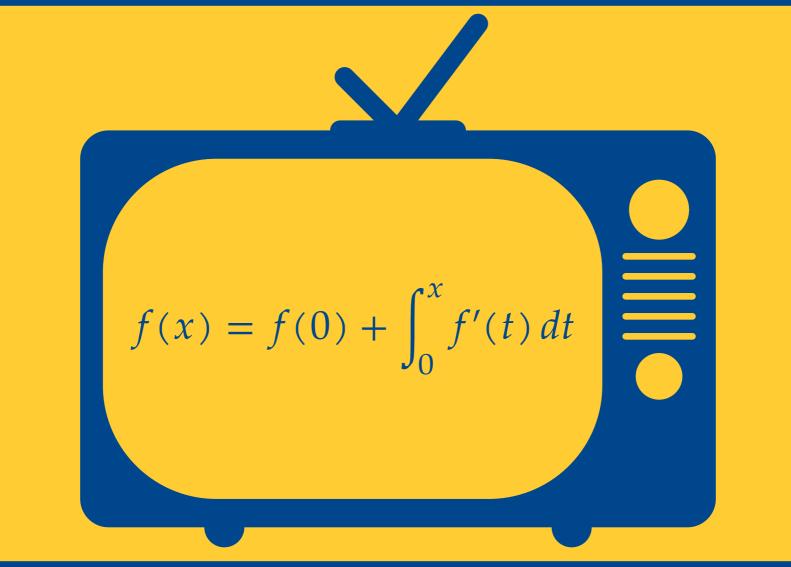
Display:
$$\frac{1}{(2\pi i)^k} \int_{\nu+x} \varkappa q$$

Inline:
$$[1/(2\pi i)^k] \int_{\nu+x} \varkappa \varphi \text{ or } (2\pi i)^{-k} \int_{\nu+x} \varkappa \varphi$$

The fraction above can be slashed as we first show, which leads to extra brackets. It is perhaps better in cases like this to simply get rid of the fraction by writing $1/(2\pi i)^k$ as $(2\pi i)^{-k}$.

Display:
$$a^{\frac{3}{5}} = a^{\frac{1}{2}b} = w^{(N+2)/(N-2)} = L^{Np/(N-2)} \left(\int_{\Omega} |f|^p \, d\mu\right)^{1/p}$$

Inline: $a^{3/5} a^{b/2} \qquad w^{(N+2)/(N-2)} L^{Np/(N-2)} \left(\int_{\Omega} |f|^p d\mu\right)^{1/p}$


Fractions in exponents and indices are set more or less as if they were set on the line, but with smaller sizes. This is taken care of automatically.

Bad:
$$e^{\frac{\ell_{\gamma_1}(X) + \ell_{\gamma_2}(X)}{2}}$$
 Better: $e^{\frac{1}{2}[\ell_{\gamma_1}(X) + \ell_{\gamma_2}(X)]}$ Better: $\exp\left\{\frac{1}{2}[\ell_{\gamma_1}(X) + \ell_{\gamma_2}(X)]\right\}$

The first example above is too cluttered. It gets slightly better if we take the $\frac{1}{2}$ out as a factor, but even better if we avoid the exponential form altogether and write the exponential function as exp. We end this long list with examples by reminding you that it is also possible to use a slash in display math.

Display:
$$\mathcal{M}_{g,n} = \mathcal{T}_{g,n}(L) / \text{Mod}_{g,n} \quad \left(\frac{az+b}{cz+d}\right) / \left(\frac{ez+f}{gz+h}\right)$$

Inline:
$$\mathcal{M}_{g,n} = \mathcal{T}_{g,n}(L) / \text{Mod}_{g,n} [(az+b)/(cz+d)]/[(ez+f)/(gz+h)]$$

5 Displayed math

5.1 Introduction

By displayed formulas we mean formulas that stand alone, broken out of the paragraph. One simple example is given by

$$f(x) = f(0) + \int_0^x f'(t) \, dt$$

In contrast with inline formulas, that we just discussed, we have much more freedom when it comes to the displayed ones. If the formula is tall it is not a big problem, as long as it fits on the page. If it is long, we can break it across lines. For this reason it is very tempting to use displayed formulas a lot. But they can be overused. If every paragraph contains one, the text will easily look torn apart.

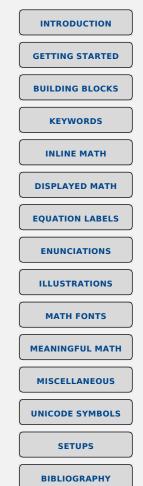
Nevertheless, displayed formulas are useful, and in this chapter we will discuss various ways of typesetting them. Their structure can vary, and that calls for different constructions in ConT_EXt. Until recently, and in particular in traditional T_EX, to typeset long formulas with several verbs (say equal signs), we were stuck with alignment constructions that were based on \halign. Everything was put into boxes, and the parts were typeset in several different math formulas, and then put together. In ConT_EXt(lmtx) we can in fact stay in paragraph mode, and format the paragraph according to our needs. We only need to enter and leave mathematics once. It has several positive consequences; we can more easily convert to other formats and make the code accessible.

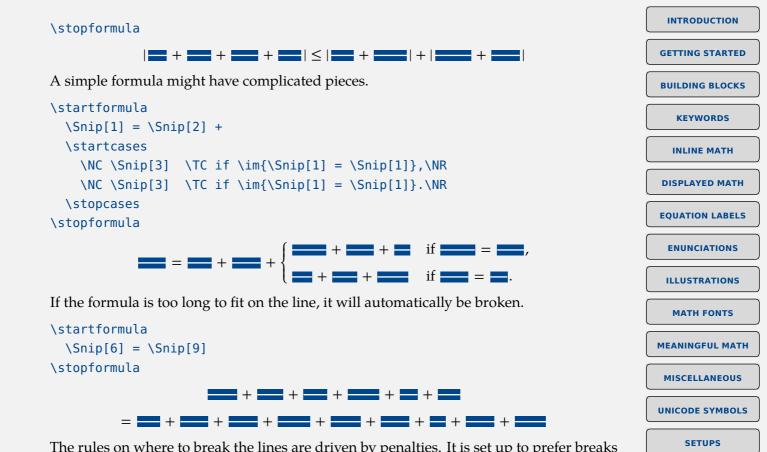
244
GETTING STARTED
BUILDING BLOCKS
KEYWORDS
INLINE MATH
DISPLAYED MATH
EQUATION LABELS
ENUNCIATIONS
ILLUSTRATIONS
MATH FONTS
MEANINGFUL MATH
MISCELLANEOUS
UNICODE SYMBOLS
SETUPS
BIBLIOGRAPHY

5.2 Different types of displayed formulas

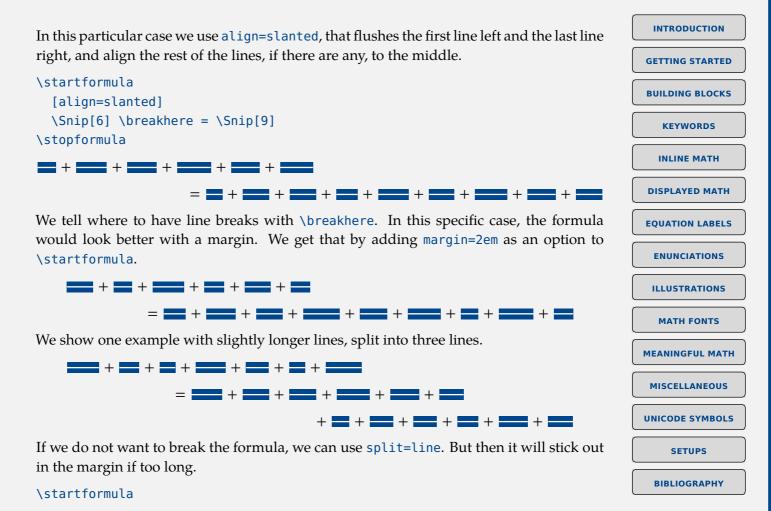
We follow [Lan61] and divide the types of formulas into three classes, depending on the structure they have. By this we mean the number of verbs (like =, \leq) but also how many formulas there are.

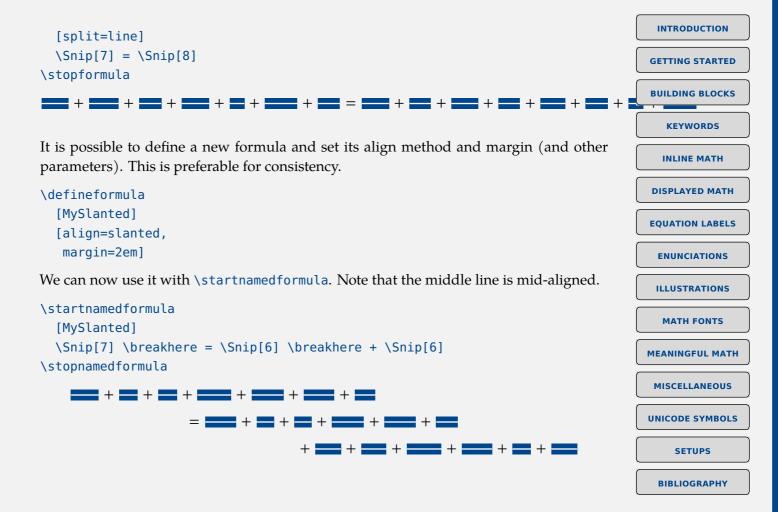
- 1. A *simple formula* is a formula with at most one verb, like a = b + c/d and a + b c.
- 2. A *chain formula* is a formula with several verbs, like $a = b + c \le d + e$.
- 3. A *multiple formula* is a set of formulas (that can be simple or chain formulas) that are to be set together.

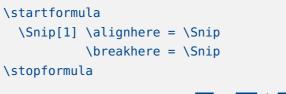

We will discuss these types one by one. We will often use a dummy command \Snip that prints some dummy math. This is merely to emphasize the structure of the formulas, not their content.


5.3 Simple formulas

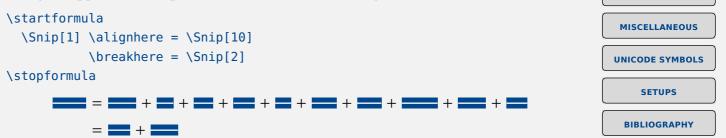
We start with the very simplest type of formula.


```
\startformula
  \Snip[1] \colonequals \Snip
  \stopformula
  := = + =
  \startformula
   \fenced[bar]{\Snip[4]}
   \leg
```


```
\fenced[bar]{\Snip[2]} + \fenced[bar]{\Snip[2]}
```



The rules on where to break the lines are driven by penalties. It is set up to prefer breaks just before the relation class, or, if that is not possible, just before the binary class. Note that both lines are mid-aligned. We can control both the breaking point and the alignment.

5.4 Chain formulas


Chain formulas contain more than one verb. It is often a good idea to break the formula over several lines and align on the verbs. This is done by using \alignhere and \breakhere.

The same output can be obtained by using \startalign and \stopalign. There is, however, an important difference. When we use \startalign and \stopalign the formula is typeset with the \halign primitive. This means that we enter end leave math mode for every cell. With the method just shown, using \alignhere, the formula is in fact one long paragraph that is broken at the appropriate places, and we never leave math mode.

It might happen that one part of the formula is much longer than the others.

INTRODUCTION

GETTING STARTED

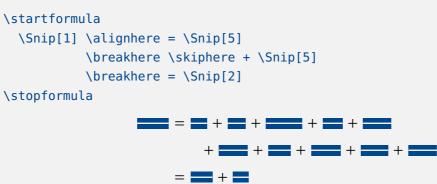
BUILDING BLOCKS

KEYWORDS

INLINE MATH

DISPLAYED MATH

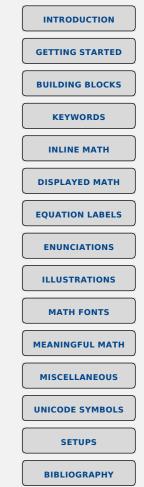
EQUATION LABELS

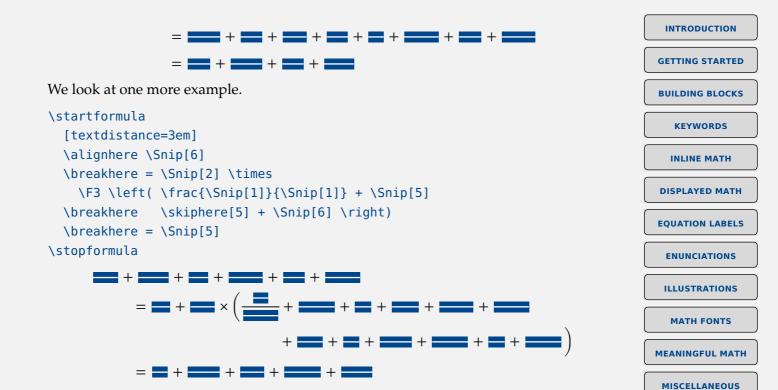

ENUNCIATIONS

ILLUSTRATIONS

MATH FONTS

MEANINGFUL MATH


Such a formula might look a bit unbalanced, with the equal signs so far to the left, or you might be on a narrower text block. A remedy might be to break the right-hand side in the first line into two pieces. But then we should also indent the (new) second line a bit. This is done with \skiphere.



If you have a too long left-hand side, it is possible to add it on its own line. Then the textdistance key is useful. The textdistance=3em will add 3em on all lines except the first.

```
\startformula
 [textdistance=3em]
 \alignhere \Snip[6]
 \breakhere = \Snip[8]
 \breakhere = \Snip[4]
 \stopformula
```


Some comments are needed. First, we used \F3 to force the delimiters to be of the third available size. Notice also that we use a \breakhere inside the delimited part, so that is possible. We have used \skiphere[5] to emphasize that the broken pair of parentheses belong to each other. The 5 is a multiplier of the standard skip, that is set to 2em, but it can be changed with the textmargin key. It is also possible to specify an explicit length, as in \skiphere[4em].

UNICODE SYMBOLS

SETUPS

5.5 Multiple formulas

We will here look at displayed content that in fact consists of several formulas. In inline mode, when we write $\lim \{f(x) = \sin x\}$, $\lim \{x \in \mathbb{R}, x \in \mathbb{R}\}$. The point here is that we use two formulas and the comma in-between them is taken from the text font (we remind you of Section 2.16 about punctuation in math). We separate formulas with \mbox{mtp} , math text punctuation.

```
\startformula
f(x) = \sin x \mtp{,}
x \in \reals \mtp{.}
\stopformula
```

$$f(x) = \sin x, \quad x \in \mathbb{R}$$

We can, if we want to enforce the structure, put the formulas into the relevant math mode, but that is in general tedious.

```
\startformula
  \dm{f(x) = \sin x} \mtp{,}
  \dm{x \in \reals} \mtp{.}
  \stopformula
```

 $f(x) = \sin x, x \in \mathbb{R}.$

The \mtp puts it argument into an hbox and apply the mathtextpunctuation class; the extra space you see to the right of the comma is set up via the atom class mathtextpunctuation. One can omit the comma (some also omit the period) in the example above, and then it is

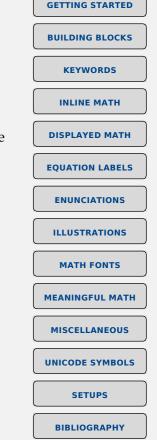
customary to use parentheses for the domain of definition. We use \mtp{} to get the same amount of extra spacing,

```
\startformula
  f(x) = \sin x \mtp{}
  (x \in \reals)
\stopformula
```

```
f(x) = \sin x \quad (x \in \mathbb{R})
```

It is usually best to keep the formulas on one line if they fit. Add spacing (for example with \mtp or \quad) between them,

```
\startformula
x = r \sin\theta \cos\phi \mtp{,}
y = r \sin\theta \sin\phi \mtp{,}
z = r \cos\theta \mtp{.}
\stopformula
```


```
x = r \sin \theta \cos \phi, y = r \sin \theta \sin \phi, z = r \cos \theta.
```

] = --- + --- + ----

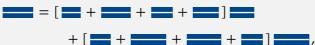
We can use \breakhere to stack several formulas on top of each other.

```
\startformula
```

```
\Snip[1] = \Snip[4] \breakhere \Snip[1] = \Snip[5]
\stopformula
```


INTRODUCTION

If, as above, the formulas follow each other directly, only have one verb each, and if they have the same character, it might be a good idea to align them on the verb (the equal sign in the example). This is done by adding multiple \alignhere, at the relevant places.


```
\startformula
  \Snip[1] \alignhere = \Snip[4] \breakhere
  \Snip[1] \alignhere = \Snip[5]
  \stopformula
```


Here is another case where it makes sense to align on the equal signs, even though the third equation runs over two lines. We use \skiphere to indent the last line.

$$\begin{aligned} \frac{\pi}{4} &= \arctan 1, \\ \frac{\pi}{4} &= \arctan \frac{1}{2} + \arctan \frac{1}{3}, \\ \frac{\pi}{4} &= 183 \arctan \frac{1}{239} + 32 \arctan \frac{1}{1023} - 68 \arctan \frac{1}{5832} \\ &+ 12 \arctan \frac{1}{110443} - 12 \arctan \frac{1}{4841182} - 100 \arctan \frac{1}{6826318}. \end{aligned}$$

It is not a problem if more than one (or all) equations do continue on the next line,

INTRODUCTION **GETTING STARTED BUILDING BLOCKS KEYWORDS INLINE MATH DISPLAYED MATH** EQUATION LABELS **ENUNCIATIONS ILLUSTRATIONS** MATH FONTS **MEANINGFUL MATH MISCELLANEOUS** UNICODE SYMBOLS SETUPS **BIBLIOGRAPHY**

= [== + = + = + =] == . + [== + = + = + = + =] == .

The following three formulas all have two equal signs. We suggest not to align on any of the equal signs, since that will promote either one of them,

$$E = \langle \mathbf{x}_{u}, \mathbf{x}_{u} \rangle = r^{2},$$

$$F = \langle \mathbf{x}_{u}, \mathbf{x}_{v} \rangle = 0,$$

$$G = \langle \mathbf{x}_{v}, \mathbf{x}_{v} \rangle = (a + r \cos u)^{2}$$

If you want to enforce alignment, it is best to do so on the first equal sign,

$$E = \langle \mathbf{x}_{u}, \mathbf{x}_{u} \rangle = r^{2},$$

$$F = \langle \mathbf{x}_{u}, \mathbf{x}_{v} \rangle = 0,$$

$$G = \langle \mathbf{x}_{v}, \mathbf{x}_{v} \rangle = (a + r \cos u)^{2},$$

In the above case all terms fit nicely on one line, so that is a good option,

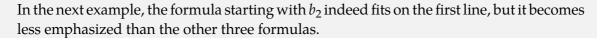
$$E = \langle \mathbf{x}_u, \mathbf{x}_u \rangle = r^2, \quad F = \langle \mathbf{x}_u, \mathbf{x}_v \rangle = 0, \quad G = \langle \mathbf{x}_v, \mathbf{x}_v \rangle = (a + r \cos u)^2.$$

The formulas

$$x^{2} = \frac{c^{2} \sin^{2} \alpha \sin^{2} \beta}{\sin^{2} \alpha + \sin^{2} \beta - 2 \sin \alpha \sin \beta \cos \gamma'}$$
$$(\pi - 2\alpha) + (\pi - 2\beta) + (\pi - 2\gamma) = \pi,$$

do not have the same character (yes, in this case more aesthetically than mathematically), and are best centered independently, or not put in the same display at all,

$$x^{2} = \frac{c^{2} \sin^{2} \alpha \sin^{2} \beta}{\sin^{2} \alpha + \sin^{2} \beta - 2 \sin \alpha \sin \beta \cos \gamma'},$$
$$(\pi - 2\alpha) + (\pi - 2\beta) + (\pi - 2\gamma) = \pi.$$


It is bad style to introduce alignments where they do not belong. Let us consider a few examples, found in math books, where either the alignment was non-optimal, or where it should not have been used. We start with an example where the first formula is a long chain formula that needs to be broken over two lines.

$$\begin{split} \mathcal{F}_{x} - \dot{\mathcal{F}}_{\dot{x}} &= \dot{x}\mathcal{F}_{x\dot{x}} + \dot{y}\mathcal{F}_{x\dot{y}} - \mathcal{F}_{\dot{x}x}\dot{x} - \mathcal{F}_{\dot{x}y}\dot{y} - \mathcal{F}_{\dot{x}\dot{x}}\ddot{x} - \mathcal{F}_{\dot{x}\dot{y}}\ddot{y} \\ &= \dot{y}[\mathcal{F}_{x\dot{y}} - \mathcal{F}_{\dot{x}y} - (\dot{x}\ddot{y} - \dot{y}\ddot{x})\mathcal{F}_{1}], \\ \mathcal{F}_{y} - \dot{\mathcal{F}}_{\dot{y}} &= -\dot{x}[\mathcal{F}_{x\dot{y}} - \mathcal{F}_{\dot{x}y} + (\dot{x}\ddot{y} - \ddot{x}\dot{y})\mathcal{F}_{1}]. \end{split}$$

Here one could consider to set it as two independent formulas, and then there is nothing wrong by aligning the first one on the equal signs,

$$\begin{aligned} \mathcal{F}_{x} - \dot{\mathcal{F}}_{\dot{x}} &= \dot{x}\mathcal{F}_{x\dot{x}} + \dot{y}\mathcal{F}_{x\dot{y}} - \mathcal{F}_{\dot{x}\dot{x}}\dot{x} - \mathcal{F}_{\dot{x}\dot{y}}\dot{y} - \mathcal{F}_{\dot{x}\dot{x}}\ddot{x} - \mathcal{F}_{\dot{x}\dot{y}}\ddot{y} \\ &= \dot{y}[\mathcal{F}_{x\dot{y}} - \mathcal{F}_{\dot{x}y} - (\dot{x}\ddot{y} - \dot{y}\ddot{x})\mathcal{F}_{1}], \\ \mathcal{F}_{y} - \dot{\mathcal{F}}_{\dot{y}} &= -\dot{x}[\mathcal{F}_{x\dot{y}} - \mathcal{F}_{\dot{x}y} + (\dot{x}\ddot{y} - \ddot{x}\dot{y})\mathcal{F}_{1}]. \end{aligned}$$

and

GETTING STARTED BUILDING BLOCKS **KEYWORDS INLINE MATH DISPLAYED MATH EOUATION LABELS ENUNCIATIONS ILLUSTRATIONS** MATH FONTS **MEANINGFUL MATH** MISCELLANEOUS UNICODE SYMBOLS

SETUPS

BIBLIOGRAPHY

INTRODUCTION

256

$$b_{1} = 1 - \frac{x^{2}}{2!}, \quad b_{2} = 1 - \frac{x^{2}}{2} + \frac{x^{4}}{4!} - \frac{x^{6}}{6!},$$

$$b_{3} = 1 - \frac{x^{2}}{2} + \frac{x^{4}}{4!} - \frac{x^{6}}{6!} + \frac{x^{8}}{8!} - \frac{x^{10}}{10!},$$

$$b_{4} = 1 - \frac{x^{2}}{2} + \frac{x^{4}}{4!} - \frac{x^{6}}{6!} + \frac{x^{8}}{8!} - \frac{x^{10}}{10!} + \frac{x^{12}}{12!} - \frac{x^{14}}{14!}.$$

Here, we better use one formula per line, if we want to align at all.

$$b_{1} = 1 - \frac{x^{2}}{2!},$$

$$b_{2} = 1 - \frac{x^{2}}{2} + \frac{x^{4}}{4!} - \frac{x^{6}}{6!},$$

$$b_{3} = 1 - \frac{x^{2}}{2} + \frac{x^{4}}{4!} - \frac{x^{6}}{6!} + \frac{x^{8}}{8!} - \frac{x^{10}}{10!},$$

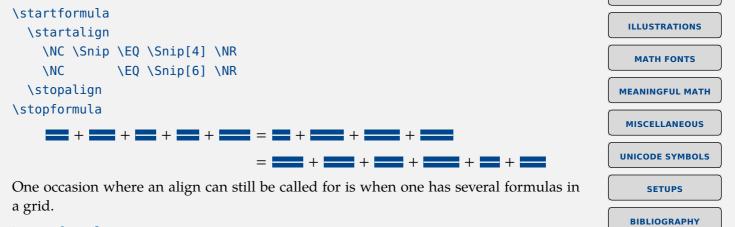
$$b_{4} = 1 - \frac{x^{2}}{2} + \frac{x^{4}}{4!} - \frac{x^{6}}{6!} + \frac{x^{8}}{8!} - \frac{x^{10}}{10!} + \frac{x^{12}}{12!} - \frac{x^{14}}{14!}.$$

Sometimes it makes sense to group several equations with a brace.

\startformula
 \startalign
 [location=packed,
 fences=sesac]
 \NC x \EQ r \sin\theta \cos\phi \mtp{,} \NR
 \NC y \EQ r \sin\theta \sin\phi \mtp{,} \NR
 \NC z \EQ r \cos\theta \mtp{.} \NR
 \stopalign

258

```
x = r \sin \theta \cos \phi,


y = r \sin \theta \sin \phi,

z = r \cos \theta.
```

It might at first glance look weird with the brace on the right side, but that makes sense if we view the three equations as one unit and add an equation number to it. The EQ is a shortcut for NC =.

5.6 Alignments

We mentioned before that it is also possible to use \startalign and \stopalign to align formulas. This has for a very long time been *the* way to do it, but now it is almost not needed in ConT_EXt anymore. We show a few examples.

259

INTRODUCTION

INLINE MATH


DISPLAYED MATH

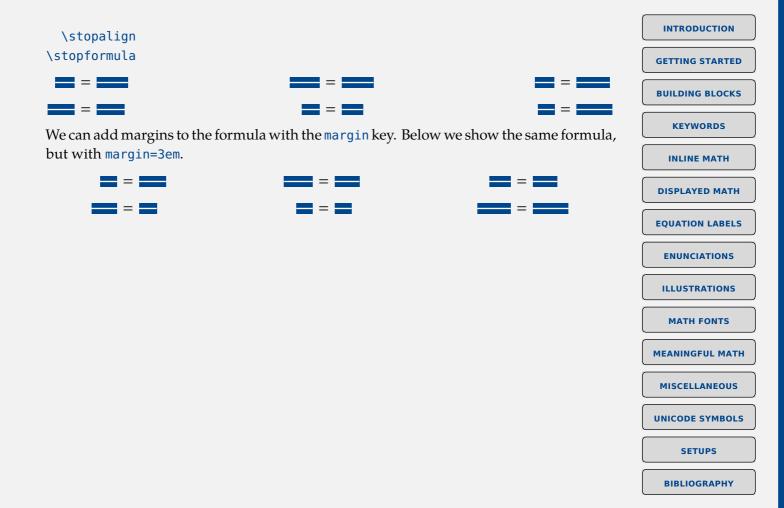
EQUATION LABELS

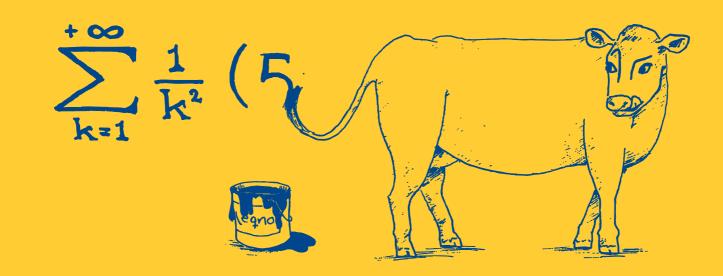
ENUNCIATIONS

\startformula

The result is three (since m=3) columns of formulas, and each formula has two points of alignment. The distance=3em sets 3em of spacing between the columns.

```
\startformula
  \startalign
  [m=3,distance=3em plus 1fil,align={1:right,2:left}]
  \NC \Snip[1] \EQ \Snip[1]
  \NC \Snip[1] \EQ \Snip[1]
  \NC \Snip[1] \EQ \Snip[1] \NR
  \NC \Snip[1] \EQ \Snip[1]
  \NR
```


MATH FONTS


MEANINGFUL MATH

MISCELLANEOUS

UNICODE SYMBOLS

SETUPS

6 Equation labels

6.1 Introduction

There are different schools on which equations to number. Some people like to number precisely the equations that are referred to in the text, others like to label all equations, since the reader might need to refer to an equation that the author did not refer to in the text. In any case, to be able to refer to an equation, we need to label it somehow. The standard way to achieve equation numbering in ConTEX has always been to wrap the formula in \startplaceformula and \stopplaceformula. With the new displayed formula mechanism we will see that new opportunities have appeared.

6.2 Numbering a simple formula

The number will by default be positioned to the right of the equation, flushed to the right side of the text block. We give an example.

 $a^2 + b^2 = c^2$

```
\startplaceformula
 [reference=eq:Pythagoras]
 \startformula
    a^2 + b^2 = c^2.
    \stopformula
    \stopplaceformula
```

From \in{Equation}[eq:Pythagoras] it follows\unknown

GETTING STARTED BUILDING BLOCKS KEYWORDS INLINE MATH DISPLAYED MATH EQUATION LABELS **ENUNCIATIONS ILLUSTRATIONS** MATH FONTS **MEANINGFUL MATH** MISCELLANEOUS UNICODE SYMBOLS SETUPS **BIBLIOGRAPHY**

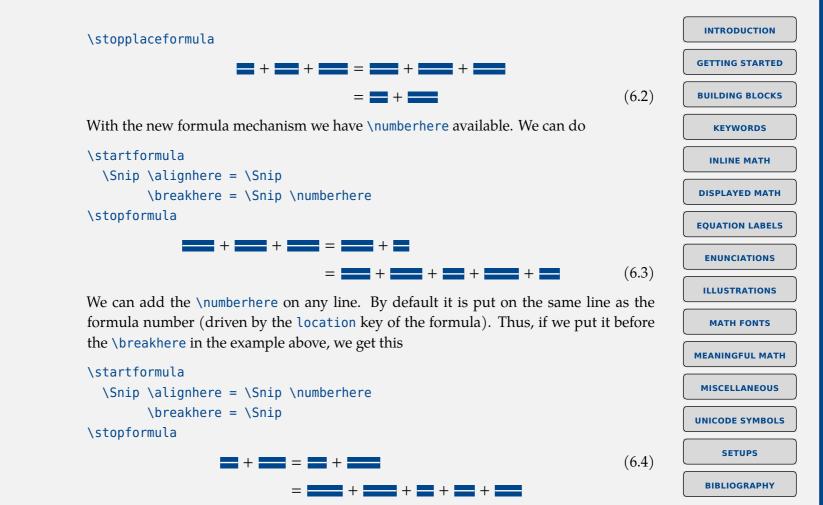
(6.1)

INTRODUCTION

From Equation 6.1 it follows...

Note how the equation number was referred to with \in. The label of the formula is enclosed in parentheses, but when we referred to it we only got the number. To get parentheses we define a new referencing command.

```
\definereferenceformat
```


```
[eqref]
[left=(,
   right=)]
We can now use \eqref.
From \eqref[eq:Pythagoras] it follows\unknown
```

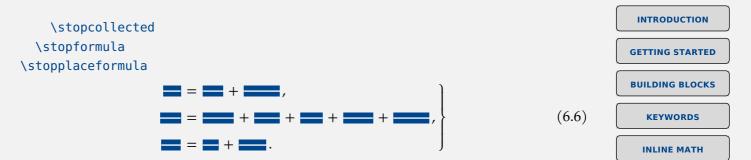
```
From (6.1) it follows...
```

6.3 One formula running over several lines

We recall that a chain formula, even if it runs over several lines, is still one formula, and therefore it should have (at most) one number attached to it. The number will by default be placed after the formula, flush right.

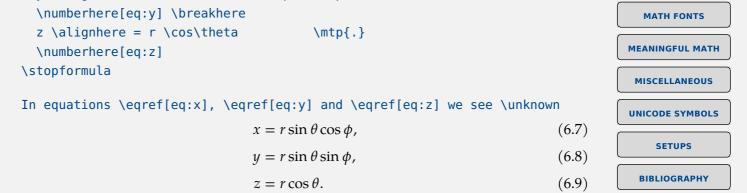
```
\startplaceformula
  \startformula
  \Snip \alignhere = \Snip
   \breakhere = \Snip
  \stopformula
```


6.4 Several equations on several lines


Sometimes several equations can be considered to be a group of equations, and then it can be natural to apply one number to the group. We can use the **collected** environment that we defined before.

```
\startplaceformula
  \startformula
    \startcollected
      \NC x \EQ r \sin\theta \cos\phi \mtp{,} \NR
      \NC y \EQ r \sin\theta \sin\phi \mtp{,} \NR
      NC z EQ r \cos \theta 
    \stopcollected
  \stopformula
\stopplaceformula
                               x = r \sin \theta \cos \phi,
                               y = r \sin \theta \sin \phi,
                               z = r \cos \theta.
\startplaceformula
  \startformula
    \startcollected
      \NC \Snip[1] \EQ \Snip \mtp{,} \NR
      \NC \Snip[1] \EQ \Snip \mtp{,} \NR
```

\NC \Snip[1] \EQ \Snip \mtp{.} \NR


INTRODUCTION **GETTING STARTED BUILDING BLOCKS KEYWORDS INLINE MATH DISPLAYED MATH EQUATION LABELS ENUNCIATIONS ILLUSTRATIONS** MATH FONTS **MEANINGFUL MATH** MISCELLANEOUS **UNICODE SYMBOLS** SETUPS **BIBLIOGRAPHY**

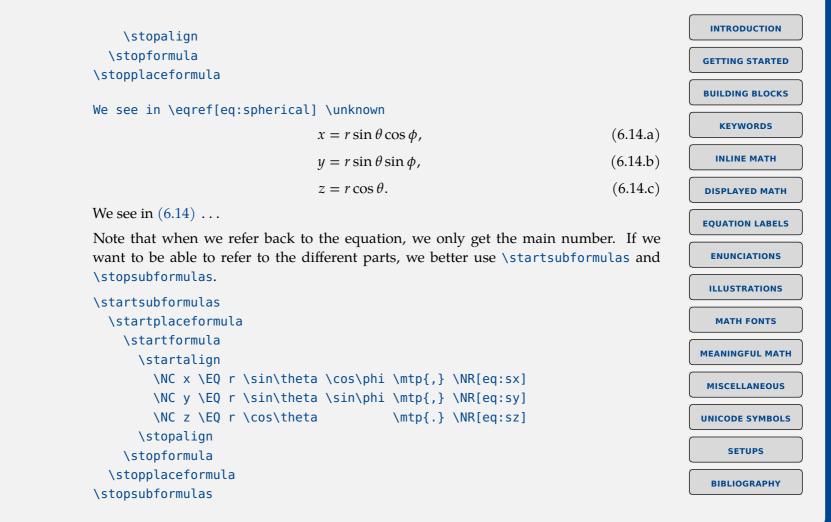
(6.5)

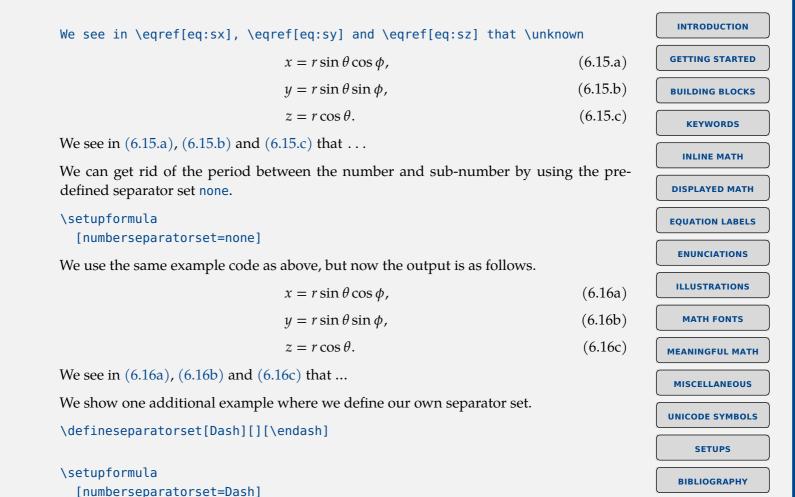
Note that we did not give any reference to the equations above, so we cannot refer to it. If we really want to number each equation independently, we can either use several \numberhere or we can use align and add tags to \NR. In the first case it comes out as

```
\startformula
  x \alignhere = r \sin\theta \cos\phi \mbox{mtp}{,}
  \numberhere[eg:x] \breakhere
  y \alignhere = r \sin\theta \sin\phi \mbox{mtp}{,}
  \numberhere[eg:y] \breakhere
  z = r cos theta
                                        \mbox{mtp{.}}
  \numberhere[eq:z]
```


DISPLAYED MATH

EQUATION LABELS


ENUNCIATIONS


ILLUSTRATIONS

INTRODUCTION In equations (6.7), (6.8) and (6.9) we see ... In the second case, with an align, we instead do **GETTING STARTED** \startplaceformula **BUILDING BLOCKS** \startformula \startalign **KEYWORDS** \NC x \EQ r \sin\theta \cos\phi \mtp{,} \NR[eq:X] **INLINE MATH** \NC y \EQ r \sin\theta \sin\phi \mtp{,} \NR[eq:Y] \NC z \EQ r \cos\theta \mtp{.} \NR[eq:Z] **DISPLAYED MATH** \stopalign \stopformula **EQUATION LABELS** \stopplaceformula **ENUNCIATIONS** In equations \eqref[eq:X], \eqref[eq:Y] and \eqref[eq:Z] we see \unknown **ILLUSTRATIONS** $x = r \sin \theta \cos \phi,$ (6.10)MATH FONTS $y = r \sin \theta \sin \phi$, (6.11) $z = r \cos \theta$. (6.12)**MEANINGFUL MATH** In equations (6.10), (6.11) and (6.12) we see ... MISCELLANEOUS 6.5 Sub-equations UNICODE SYMBOLS For the example with spherical coordinates above, one might prefer to have one number and SETUPS instead use sub-numbering with letters on the different equations. Again, we can use any of the mechanisms. With the new mechanism we need to add \startsubnumberinghere **BIBLIOGRAPHY**

and \stopsubnumberinghere around the formula.

271

\stopformula

INTRODUCTION The same example code now gives the following output. $x = r \sin \theta \cos \phi$, (6.17–a) **GETTING STARTED** $y = r \sin \theta \sin \phi,$ (6.17-b) **BUILDING BLOCKS** $z = r \cos \theta$. (6.17-c)**KEYWORDS** We see in (6.17–a), (6.17–b) and (6.17–c) that ... **INLINE MATH** 6.6 Configuring equation numbers **DISPLAYED MATH** So far, we have only used equation numbers on the right side of the equations. We can change this. **EQUATION LABELS** \setupformula **ENUNCIATIONS** [location=left] **ILLUSTRATIONS** With this setting, the equation numbers are placed flushed left instead. It is also possible to set location to inner or outer. MATH FONTS \startplaceformula **MEANINGFUL MATH** \startformula J {3/2}(x) MISCELLANEOUS $x^{-1} J \{1/2\}(x) - J \{-1/2\}(x)$ **UNICODE SYMBOLS** = SETUPS $\left(\frac{2}{\phi x} \right)^{1/2}$ $\left(\frac{x}{x} - \cos x \right)$

\stopplaceformula

(6.18)
$$J_{3/2}(x) = x^{-1} J_{1/2}(x) - J_{-1/2}(x) = \left(\frac{2}{\pi x}\right)^{1/2} \left(\frac{\sin x}{x} - \cos x\right)$$

With longer formulas that run over several lines, the equation number is now put on the first line instead of the last.

\startplaceformula \startformula J_{3/2}(x) \alignhere = x^{-1} J_{1/2}(x) - J_{-1/2}(x) \breakhere = \left(\frac{2}{\pi x} \right)^{1/2} \left(\frac{\sin x}{x} - \cos x \right) \stopformula \stopplaceformula

(6.19)
$$J_{3/2}(x) = x^{-1}J_{1/2}(x) - J_{-1/2}(x)$$

$$= \left(\frac{2}{\pi x}\right)^{1/2} \left(\frac{\sin x}{x} - \cos x\right)$$

UNICODE SYMBOLS

There are more possibilities for the formula numbering. We will show a few, but we do not recommend anyone to use this format.

\setupformula

INTRODUCTION

GETTING STARTED

BUILDING BLOCKS

KEYWORDS

INLINE MATH

DISPLAYED MATH

EQUATION LABELS

ENUNCIATIONS

ILLUSTRATIONS

MATH FONTS

MEANINGFUL MATH

SETUPS

[left={[}, right={]}, numberstyle=\bf, numbercolor=C:3]

With these setups we get a different bracketing, a lovely color, and bold style.

$$J_{3/2}(x) = x^{-1} J_{1/2}(x) - J_{-1/2}(x) = \left(\frac{2}{\pi x}\right)^{1/2} \left(\frac{\sin x}{x} - \cos x\right)$$
[6.20]

We can also get a different format on the numbering.

```
\defineconversionset
 [MyConversion]
 [Romannumerals,mathGreeknumerals]
```

\setupformula

```
[numberconversionset=MyConversion]
```

This will give us roman uppercase numbers as the main formula number, and uppercase greek (math) for the sub-numbering. With greeknumerals we would have gotten the lowercase greek from the text font, if it exists. The same formula as earlier is now set like this,

$x = r \sin \theta \cos \phi,$	[6.XXI.A]	
$y = r\sin\theta\sin\phi,$	[6.XXI.B]	SETUPS
$z = r \cos \theta.$	[6.XXI. Г]	BIBLIOGRAPHY
2 . 665		

INTRODUCTION

GETTING STARTED

BUILDING BLOCKS

KEYWORDS

INLINE MATH

DISPLAYED MATH

EQUATION LABELS

ENUNCIATIONS

ILLUSTRATIONS

MATH FONTS

MEANINGFUL MATH

MISCELLANEOUS

UNICODE SYMBOLS

It is possible to give some explicit but arbitrary label to an equation. But doing so, it is not possible to refer to the equation.

```
\startplaceformula
 [title=\dagger]
\startformula
 \int u\dd v + \int v\dd u = uv
\stopformula
 \stopplaceformula
```

$$\int u \, dv + \int v \, du = uv$$

6.7 Troubleshooting

The numbered equations we have been looking at so far have been rather unproblematic, in the sense that the formulas have been narrow enough so that there has always been space enough to put the equation number. If this is not the case, it is in general a complex task to get things right. In the best of worlds, we never have to think about these problems, but it is good to be aware of the default behavior, and to know what options are available. Also, in your project you should define your own formula with your chosen setting to get consistency throughout your document.

In the examples below we will use the same formula several times but with different settings. In our default layout the formula fits on the line, with a number, but instead of changing the formula from example to example, we locally change the layout. We have also enabled a tracker (math.showmargins.less) that will guide us.

(+)

First, we look at a simple one-line formula. The result in the layout used in this document is not problematic, the formula number fits well on the same line as the formula.

$$J_{3/2}(x) = x^{-1}J_{1/2}(x) - J_{-1/2}(x) = \left(\frac{2}{\pi x}\right)^{1/2} \left(\frac{\sin x}{x} - \cos x\right)$$

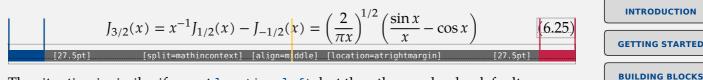
$$[0.0pt] \qquad [split=mathincontext] [align=middle] [location=right] \qquad [0.0pt]$$

$$[0.0pt]$$

Note in particular that the equation number sits in a box of a certain width. It is there to ensure that we have at least a certain distance between the formula and the equation number (the numberdistance parameter). If we add a sufficiently large margin, the equation number is by default pushed down to the line below.

$$J_{3/2}(x) = x^{-1} J_{1/2}(x) - J_{-1/2}(x) = \left(\frac{2}{\pi x}\right)^{1/2} \left(\frac{\sin x}{x} - \cos x\right)$$
(6)

[27.5pt] [split=mathincontext] [align=middle] [location=right] [27.5pt]


One could argue that in this formula, it would look better with the number on the same line as the formula, and that can be achieved by decreasing the value of numberdistance from its default 2em. In the formula below we set it to 1em.

$$J_{3/2}(x) = x^{-1}J_{1/2}(x) - J_{-1/2}(x) = \left(\frac{2}{\pi x}\right)^{1/2} \left(\frac{\sin x}{x} - \cos x\right) \quad (6.24)$$
[27.5pt] [split=mathincontext] [align=middle] [location=right] [27.5pt]

Another option, if we are locally in a narrower mode, might be to put the number at the right margin, independent of the current \leftskip and \rightskip. This is done by setting location to atrightmargin. One shall then be aware that this also nils the numberdistance.

INTRODUCTION **GETTING STARTED** BLOCKS **KEYWORDS INLINE MATH DISPLAYED MATH EOUATION LABELS ENUNCIATIONS ILLUSTRATIONS** MATH FONTS **MEANINGFUL MATH** MISCELLANEOUS UNICODE SYMBOLS

SETUPS

The situation is similar if we set location=left, but then the number by default appears on top of the formula.

$$(6.26)$$

$$INLINE MATH$$

$$J_{3/2}(x) = x^{-1}J_{1/2}(x) - J_{-1/2}(x) = \left(\frac{2}{\pi x}\right)^{1/2} \left(\frac{\sin x}{x} - \cos x\right)$$

$$ISPLAYED MATH$$

$$I(27.5pt) [split=mathincontext] [align=middle] [location=left] [27.5pt]$$

Here one can again play with the numberdistance or set location=atleftmargin. We emphasize that it is natural that the formula numbers sit above if flush left and below if flush right, in case there is not enough space. In a right-to-left document one could argue for the opposite, and it is indeed possible to change by invoking order=reverse.

$$J_{3/2}(x) = x^{-1}J_{1/2}(x) - J_{-1/2}(x) = \left(\frac{2}{\pi x}\right)^{1/2} \left(\frac{\sin x}{x} - \cos x\right)$$
[27.5pt] [split=mathincontext] [align=middle] [location=right] [27.5pt]

The situation is essentially the same when we flush formulas to the left, at least if the number is on the right.

$$J_{3/2}(x) = x^{-1}J_{1/2}(x) - J_{-1/2}(x) = \left(\frac{2}{\pi x}\right)^{1/2} \left(\frac{\sin x}{x} - \cos x\right)$$

$$[0.0pt] \qquad [split=mathincontext] [align=flushleft] [location=right] \qquad [0.0pt]$$

$$BIBLIOGRAPHY$$

KEYWORDS

EQUATION LABELS

ENUNCIATIONS

ILLUSTRATIONS

MATH FONTS

MEANINGFUL MATH

MISCELLANEOUS

UNICODE SYMBOLS

If one decides to flush the formulas to the left, one usually has a small margin to the left. Here we have used leftmargin=3em.

$$J_{3/2}(x) = x^{-1} J_{1/2}(x) - J_{-1/2}(x) = \left(\frac{2}{\pi x}\right)^{1/2} \left(\frac{\sin x}{x} - \cos x\right)$$
[33.0pt] [split=mathincontext] [align=flushleft] [location=right] [0.0pt]

If one in addition wants the number to the left, by invoking location=left, it will be forced to be on top of the formula, independent of the left margin.

$$\begin{aligned} & (6.30) \\ & J_{3/2}(x) = x^{-1} J_{1/2}(x) - J_{-1/2}(x) = \left(\frac{2}{\pi x}\right)^{1/2} \left(\frac{\sin x}{x} - \cos x\right) \\ & [33.0pt] \qquad [split=mathincontext] [align=flushleft] [location=left] \qquad [0.0pt] \end{aligned}$$

It is still possible to use location=atleftmargin, but then one has to watch out, since then numberdistance is reset.

$$(6.31) \int_{3/2} (x) = x^{-1} J_{1/2}(x) - J_{-1/2}(x) = \left(\frac{2}{\pi x}\right)^{1/2} \left(\frac{\sin x}{x} - \cos x\right)$$
[33.0pt] [split=mathincontext] [align=flushleft] [location=atleftmargin] [0.0pt]

It is the responsibility of the author to use a sufficiently large left margin. If we set it to 4em we get the following.

The situation for equations that are flushed right is completely analog to the flush left equations, but since that is a very strange way of aligning equations, we do not discuss

INTRODUCTION

GETTING STARTED

BUILDING BLOCKS

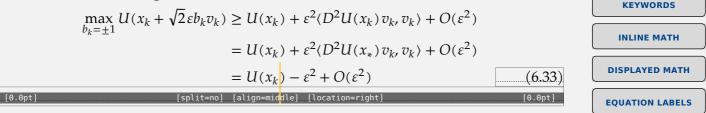
KEYWORDS

INLINE MATH

DISPLAYED MATH

EQUATION LABELS

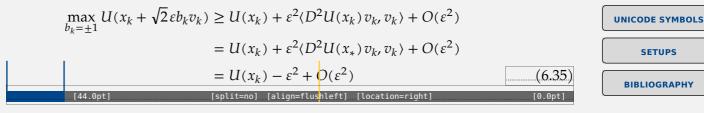
ENUNCIATIONS


ILLUSTRATIONS

MATH FONTS

MEANINGFUL MATH

MISCELLANEOUS


more examples on that. Instead we move on to the more complicated aligned and slanted equations. In fact, for aligned equations, the situation is very similar to the one for single line equations that we have just discussed, so we only show a few examples. First, if there is no issue with spacing, the equation number is placed on the first line if flush left and on the last line if flush right.

In a tighter layout, the number is still set on the last line if there is sufficient space (otherwise it goes to the line below).

$$\max_{b_k=\pm 1} U(x_k + \sqrt{2}\varepsilon b_k v_k) \ge U(x_k) + \varepsilon^2 \langle D^2 U(x_k) v_k, v_k \rangle + O(\varepsilon^2)$$
$$= U(x_k) + \varepsilon^2 \langle D^2 U(x_*) v_k, v_k \rangle + O(\varepsilon^2)$$
$$= U(x_k) - \varepsilon^2 + O(\varepsilon^2)$$
(6.34)

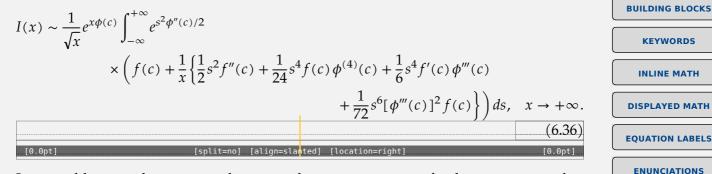
This shall also work if we flush formulas to the left.

INTRODUCTION

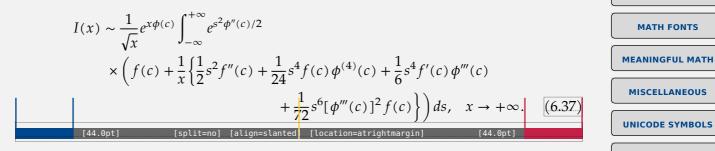
GETTING STARTED

BUILDING BLOCKS

ENUNCIATIONS


ILLUSTRATIONS

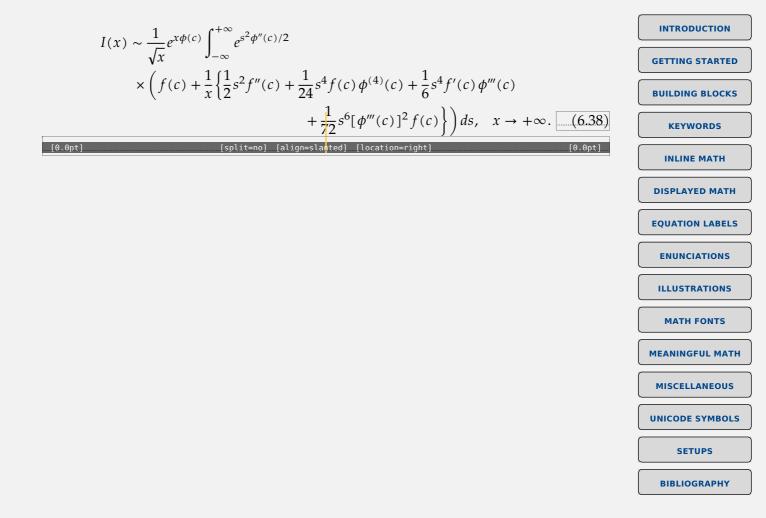
MATH FONTS

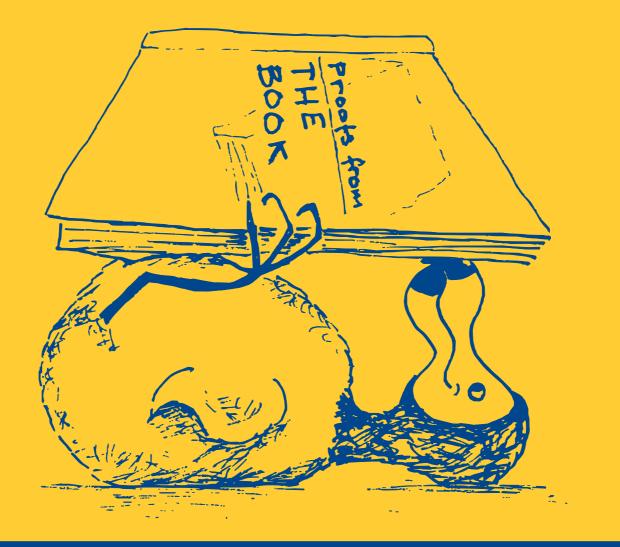

MEANINGFUL MATH

MISCELLANEOUS

We turn to slanted formulas, where we will look at examples of a formula that is split over three lines. First, we look at the result in the layout used in this document. Note that the number is placed below the last line.

It is possible to use the margin and location keys to ensure space for the equation number at the last line.


This will, however, also enforce the same margin for the mid-aligned lines. Here it is better to use the margindistance key. In the example we set it to 4em, the same value as we set the margin to in the previous formula.


INTRODUCTION

GETTING STARTED

ILLUSTRATIONS

SETUPS

7 Enunciations

7.1 Introduction

If you write on mathematics you will most likely need some theorem-like environments. In ConT_EXt they are best implemented via so-called enumerations. Enumerations have many configuration possibilities, and we won't show them all. We believe it is more instructive to define a theorem environment step-by-step, to see what some of the most useful keys do with the enumerations. We give two examples, one inspired by [LS17] and one by [Uni17].

7.2 AMS styled theorems, step by step

If you are impatient, you can have a look at page 288 for the final suggested definition of the AMS styled theorem environment.

First we define the theorem enumeration, without setting any further keys.

```
\defineenumeration[theorem]
```

Let us take a look how it comes out.

```
\starttheorem
Let \im {a} and \im {b} be the legs and let \im {c} be the
hypotenuse in a right triangle. Then
```

```
startformula
a<sup>2</sup> + b<sup>2</sup> = c<sup>2</sup>.
```

GETTING STARTED
BUILDING BLOCKS
KEYWORDS
INLINE MATH
DISPLAYED MATH
EQUATION LABELS
ENUNCIATIONS
ILLUSTRATIONS
MATH FONTS
MEANINGFUL MATH
MISCELLANEOUS
UNICODE SYMBOLS
SETUPS
BIBLIOGRAPHY

INTRODUCTION

\stopformula \stoptheorem

theorem 1

Let *a* and *b* be the legs and let *c* be the hypotenuse in a right triangle. Then

```
a^2 + b^2 = c^2.
```

If you are familiar with AMS styled theorems, you see that there are several things to change. We start by using the alternative key to avoid heads to be written on its own line. In ConT_EXt the terminology for that is that it should be serried.

```
\setupenumeration
[theorem]
[alternative=serried]
```

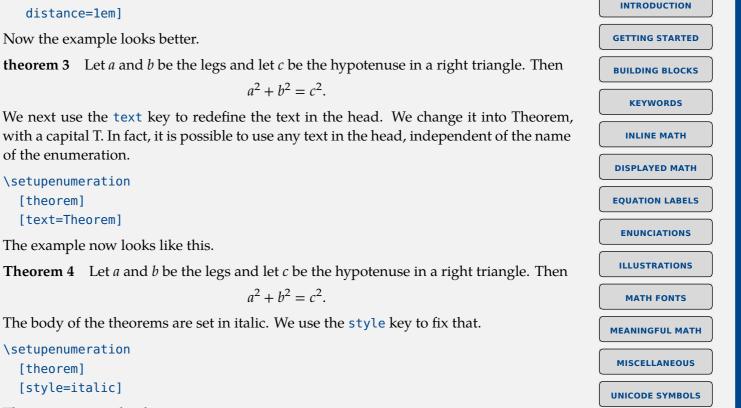
The same example as before now looks like this.

theorem 2 Let *a* and *b* be the legs and let *c* be the hypotenuse in a right triangle. Then

$$a^2 + b^2 = c^2$$

There is too much space between the head and the body. The problem here is twofold; the width of the head is too big and the distance between the head and the body is too big. We use the width and distance keys.

```
\setupenumeration
[theorem]
[width=fit,
```

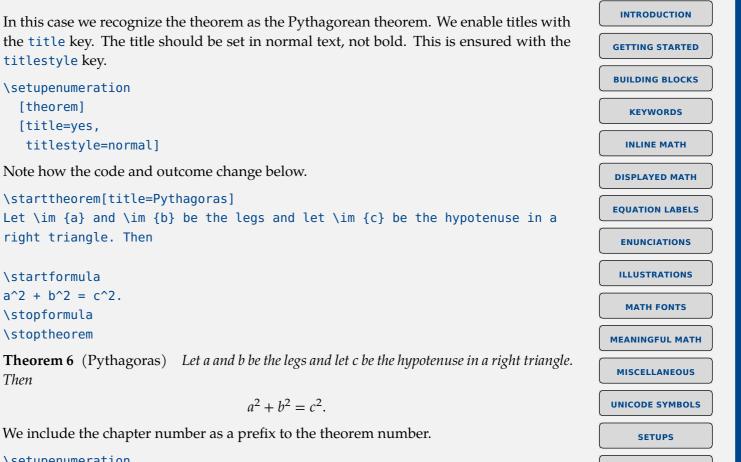


distance=1em]

[theorem]

[theorem]

Now the example looks better.



This is pretty much what we expect.

Theorem 5 Let a and b be the legs and let c be the hypotenuse in a right triangle. Then

 $a^2 + b^2 = c^2$

SETUPS


```
\setupenumeration
[theorem]
```

286

[prefix=yes, prefixsegments=chapter]

The theorem now looks like this.

Theorem 7.7 (Pythagoras) Let a and b be the legs and let c be the hypotenuse in a right triangle. Then

 $a^2 + b^2 = c^2.$

In case you also want to include the section number into the number of the theorem, you can use prefixsegments=chapter:section.

Finally, in the AMS style the head ends with a period. We use a the key headcommand to add that period. The headcommand is supposed to have one argument (the head).

```
\starttexdefinition MyThmHeadCommand #1
  #1.
\stoptexdefinition
```

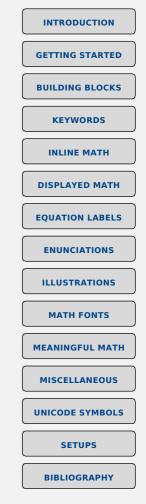
```
\setupenumeration
[theorem]
[headcommand=\MyThmHeadCommand]
```

Here we have defined our own command \MyThmHeadCommand that just sets its argument together with a period. In cases like this one could simply use the neat \groupedcommand.

In any case, the code now generates a theorem where the head ends with a (intentionally bold) period.

288

Theorem 7.8 (Pythagoras). *Let a and b be the legs and let c be the hypotenuse in a right triangle. Then*


 $a^2 + b^2 = c^2$.

Before we continue, we emphasize that you do not need to set each of these keys one by one as we have done here. In your document, you typically add everything to the definition already.

\defineenumeration
 [theorem]
 [alternative=serried,
 width=fit,
 distance=lem,
 text=Theorem,
 style=italic,
 title=yes,
 titlestyle=normal,
 prefix=yes,
 headcommand=\groupedcommand{}{.}]

7.3 More AMS styled enunciations

It is suggested in [LS17] that the following enunciations share the style of Theorem: Algorithm, Assertion, Axiom, Conjecture, Corollary, Criterion, Hypothesis, Lemma, Proposition, Reduction and Sublemma. They all share the property that they usually require some kind of argument.

We do not need to start over and write all settings for each such enunciation we need; defineenumeration provides a second optional argument, where we can give another enumeration to copy the settings from. If we only want to change the name but keep the same counter, we only need to alter the text of the head.

```
\define enumeration
```

```
[lemma]
[theorem]
[text=Lemma]
```

Note in the example below that all the settings we had from the theorem environment are inherited by the lemma environment.

```
\startlemma[reference=lem:pyth]
The altitude of a right triangle from its right angle to its hypotenuse
splits the triangle into two triangles that are both similar to the
original triangle.
\stoplemma
```

Lemma 7.9. The altitude of a right triangle from its right angle to its hypotenuse splits the triangle into two triangles that are both similar to the original triangle.

The reference=lem:pyth is here so that we can refer to this lemma later. We do this by typing \in{Lemma}[lem:pyth], which gives us Lemma 7.9.

Proofs are set in roman with head in italic, ending with a period.

```
\defineenumeration
[proof]
```

```
INTRODUCTION
  [alternative=serried,
   width=fit.
                                                                                            GETTING STARTED
   distance=lex,
   text=Proof.
                                                                                            BUILDING BLOCKS
   number=no,
                                                                                              KEYWORDS
   headstyle=italic,
   headcommand=\groupedcommand{}{.}]
                                                                                              INLINE MATH
\startproof
                                                                                            DISPLAYED MATH
  By comparing the angles of the main triangle with the two subtriangles,
  we find that they are all similar according to the angle-angle rule.
                                                                                            EQUATION LABELS
\stopproof
Proof. By comparing the angles of the main triangle with the two subtriangles, we find
                                                                                             ENUNCIATIONS
that they are all similar according to the angle-angle rule.
                                                                                             ILLUSTRATIONS
Sometimes proofs are not written directly below the theorem-like environment. It might
then be a good idea to do this in the title.
                                                                                              MATH FONTS
\setupenumeration
                                                                                            MEANINGFUL MATH
  [proof]
  [title=ves,
                                                                                             MISCELLANEOUS
   titlestyle=normal]
                                                                                            UNICODE SYMBOLS
This setting will set the title upright, and as for theorems, the titles are by default
surrounded by parentheses.
                                                                                                SETUPS
\startproof[title={of \in{Lemma}[lem:pyth]}]
                                                                                             BIBLIOGRAPHY
```

By comparing the angles of the main triangle with the two subtriangles,

```
290
```

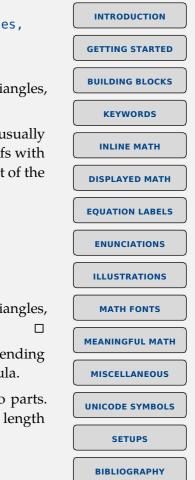
we find that they are all similar according to the angle-angle rule. \stopproof

Proof (of Lemma 7.9). By comparing the angles of the main triangle with the two subtriangles, we find that they are all similar according to the angle-angle rule.

According to the AMS style we should write "*Proof of Lemma* 7.9.", all except the number in italic. To achieve this, we reset the title style (this means that it will have the same style as the rest of the head), and also disable the parentheses around the title by resetting the keys titleleft and titleright. In addition, we first reset the predefined distance before the title (which by default is larger than a space) with help of titledistance and then add a space with the titlecommand key. Finally, we also define a new reference style that should typeset the references in normal upright text.

```
\setupenumeration
```

```
[proof]
[titleleft=,
  titleright=,
  titledistance=0pt,
  titlecommand=\groupedcommand{\space}{}]
```


```
\definereferenceformat
```

[inhead]
[style=normal]

We need to adapt the code in the proof slightly.

```
\startproof[title={of Lemma \inhead[lem:pyth]}]
```

INTRODUCTION **GETTING STARTED** BUILDING BLOCKS **KEYWORDS INLINE MATH DISPLAYED MATH EQUATION LABELS ENUNCIATIONS ILLUSTRATIONS** MATH FONTS **MEANINGFUL MATH** MISCELLANEOUS UNICODE SYMBOLS SETUPS **BIBLIOGRAPHY**


```
By comparing the angles of the main triangle with the two subtriangles, we find that they are all similar according to the angle-angle rule. 
\stopproof
```

Proof of Lemma 7.9. By comparing the angles of the main triangle with the two subtriangles, we find that they are all similar according to the angle-angle rule.

It is a common practice to end proofs with a small box, for example \Box . This box is usually set flush right on the last line of the proof. It is said that one should not end proofs with displayed formulas, but if this is done, it can make sense to put the box to the right of the formula to save a line. We can use the \closesymbol for that.

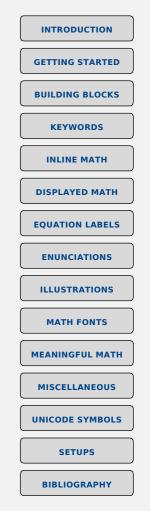
```
\setupenumeration
[proof]
[closesymbol=\mathqed]
```

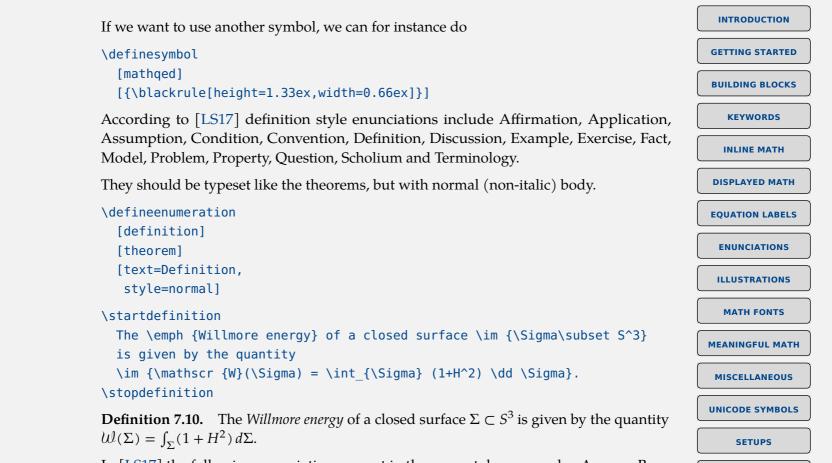
We run the last version of the example, and get this.

Proof of Lemma 7.9. By comparing the angles of the main triangle with the two subtriangles, we find that they are all similar according to the angle-angle rule.

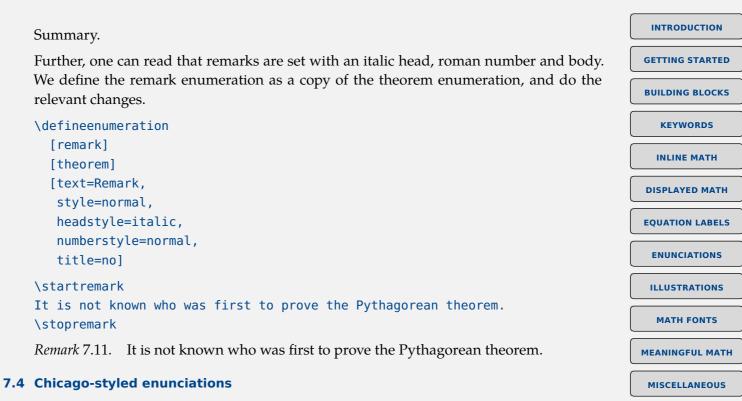
We show the output of an example where we have broken the general advice of not ending a proof with a displayed formula. The box is placed on the same line as the formula.

Proof. The height, drawn from the right angle, divides the hypotenuse into two parts. Let *x* be the length of the part adjacent to the leg with length *a*. Consequently, the length of the other part is c - x. From Lemma 7.9 it follows that


$$\frac{a}{c} = \frac{x}{a}, \quad \frac{b}{c} = \frac{c-x}{b}$$


Rearranging,

$$a^{2} + b^{2} = cx + c(c - x) = c^{2}.$$


Note the \qedhere that automatically places the symbol where we want it. If you end with a more complicated formula you might encounter problems. It is then best to rewrite the proof and end it with text instead. If we prefer to have the symbol on the line after the formula, we need to use \qed instead. We give below the complete definition of the proof environment that we ended up with.

```
\defineenumeration
  [proof]
  [alternative=serried,
  width=fit,
  distance=1em.
  text=Proof,
  number=no,
  headstyle=italic,
  headcommand=\groupedcommand{}{.},
  title=yes,
  titlestyle=,
  titleleft=,
  titleright=,
  titledistance=0pt,
  titlecommand=\groupedcommand{\space}{},
   closesymbol=\mathqed]
```


In [LS17] the following enunciations are set in the same style as remarks: Answer, Base, Case, Claim, Comment, Conclusion, Note, Notation, Observation, Subcase, Step and

According to [Uni17] most enunciations can be written in small caps (with a starting large cap)

\defineenumeration
[theorem]
[alternative=serried,

295

UNICODE SYMBOLS

SETUPS

width=fit, text=Theorem, style=italic, title=yes, prefix=yes, indenting=yes, headstyle=\sc, headindenting=yes, titlestyle=normal]

We show the output of the Pythagorean theorem again.

THEOREM 7.1 (Pythagoras) Let a and b be the legs and let c be the hypotenuse in a right triangle. *Then*

 $a^2 + b^2 = c^2.$

7.5 Comments

In case we want an enumeration to inherit all the settings from another, but to let it have its own numbering, we can explicitly set the counter.

\defineenumeration
 [proposition]
 [theorem]
 [text=Proposition,
 counter=proposition]
 \startproposition

GETTING STARTED
BUILDING BLOCKS
KEYWORDS
INLINE MATH
DISPLAYED MATH
EQUATION LABELS
ENUNCIATIONS
ILLUSTRATIONS
MATH FONTS
MEANINGFUL MATH
MISCELLANEOUS
UNICODE SYMBOLS
SETUPS
BIBLIOGRAPHY

The altitude of a right triangle from its right angle to its hypotenuse split the triangle into two triangles that are both similar to the original triangle.

\stopproposition

Proposition 7.1. *The altitude of a right triangle from its right angle to its hypotenuse split the triangle into two triangles that are both similar to the original triangle.*

INTRODUCTION **GETTING STARTED BUILDING BLOCKS KEYWORDS INLINE MATH DISPLAYED MATH EQUATION LABELS ENUNCIATIONS** ILLUSTRATIONS MATH FONTS **MEANINGFUL MATH MISCELLANEOUS** UNICODE SYMBOLS SETUPS **BIBLIOGRAPHY**

Length of curve: 392 mm X

8 Illustrations

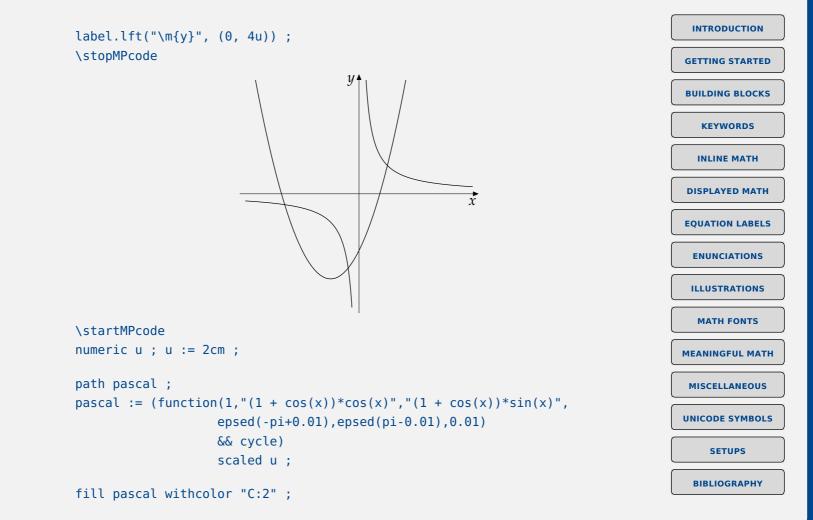
8.1 Introduction

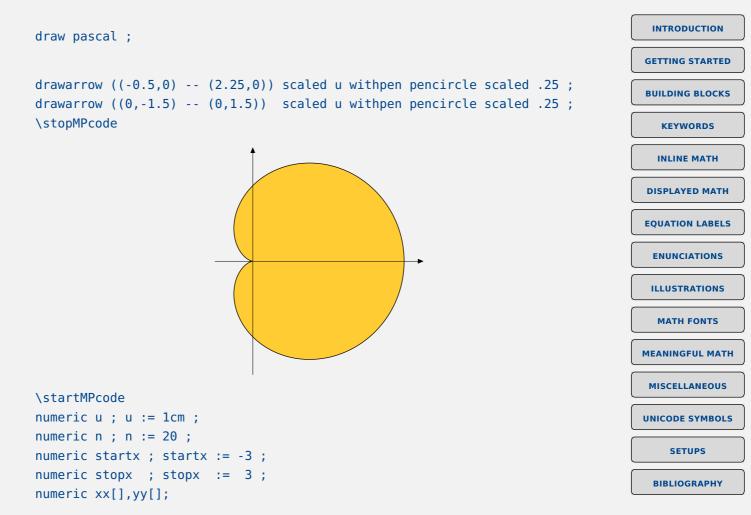
The close interplay between $ConT_EXt$ and MetaPost (or the extension MetaFun) comes in very handy when simple figures are needed. We will not go into detail, since that would add too many pages on a somewhat peripheral topic. Instead we refer to the MetaFun manual, [Hag17], and show only a few examples, without comments. There are also other good tools, like Tikz and Asymptote, that can be used within $ConT_EXt$, but we will not discuss them in this document.

8.2 Function graphs

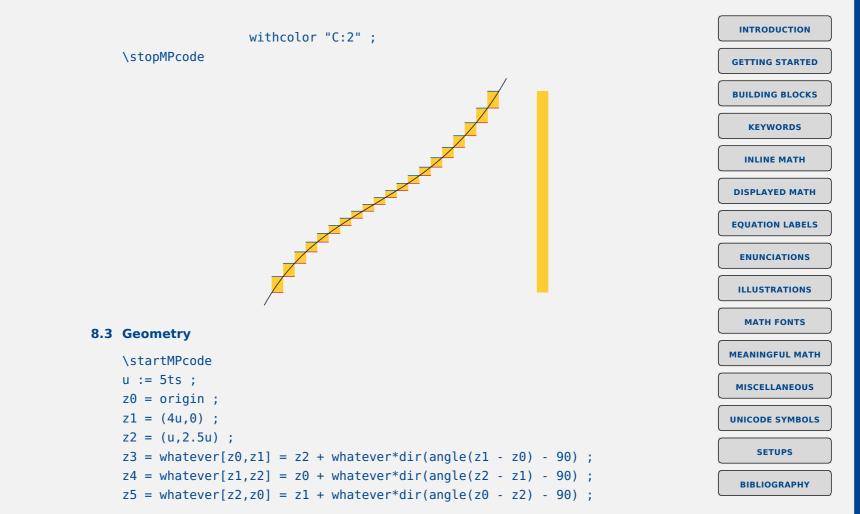
\startMPcode
numeric u ; u := .75cm ;

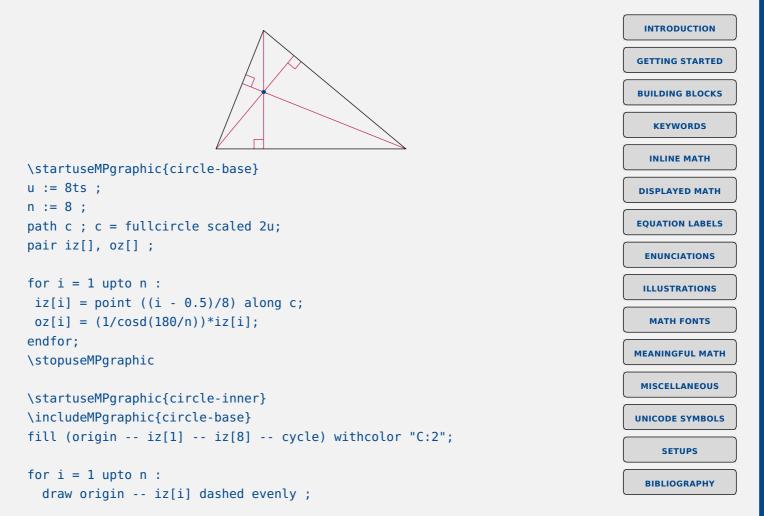
draw function(2, "x", "x*x+2*x-2", -4, 4, 1/100) scaled u ; draw function(2, "x", "1/x", -4, -0.2, 1/100) scaled u ; draw function(2, "x", "1/x", 0.2, 4, 1/100) scaled u ;

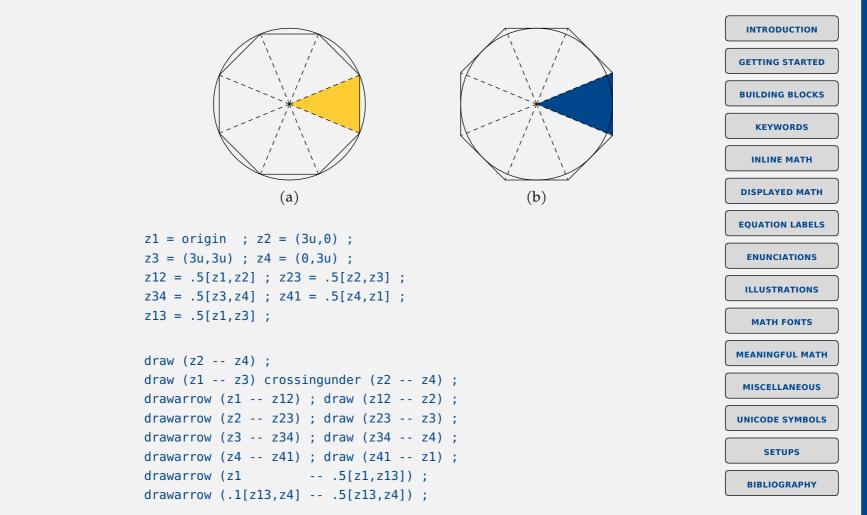

clip currentpicture to (fullsquare scaled 8u) ;

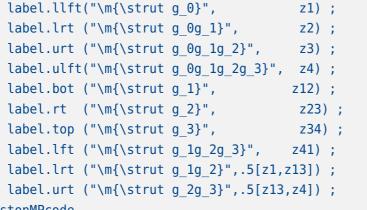

```
drawarrow ((-4.2,0) -- (4.2,0)) scaled u withpen pencircle scaled .25 ;
drawarrow ((0,-4.2) -- (0,4.2)) scaled u withpen pencircle scaled .25 ;
label.bot("m{x}", (4u, 0)) ;
```

GETTING STARTED
BUILDING BLOCKS
KEYWORDS
INLINE MATH
DISPLAYED MATH
EQUATION LABELS
ENUNCIATIONS
ILLUSTRATIONS
MATH FONTS
MEANINGFUL MATH
MISCELLANEOUS
UNICODE SYMBOLS
SETUPS
BIBLIOGRAPHY

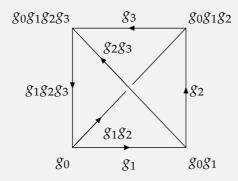

INTRODUCTION

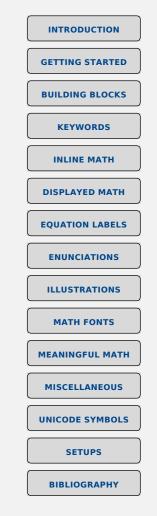


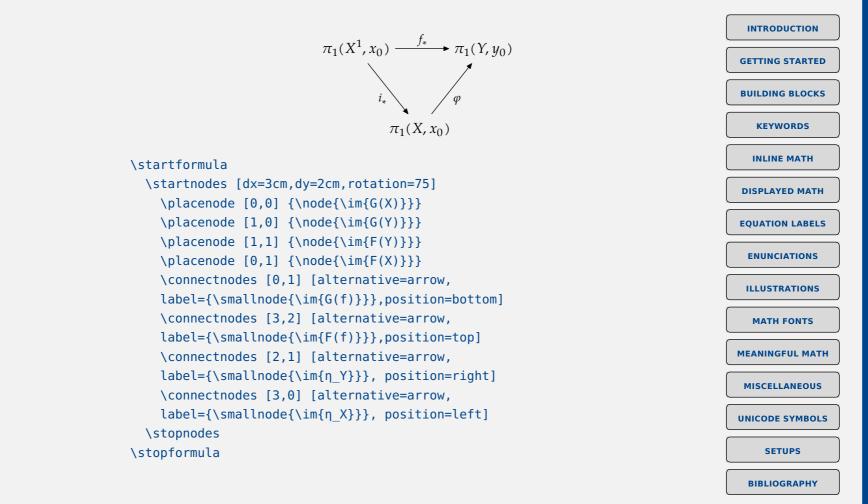

```
INTRODUCTION
path fun ; fun = (-3.2, -3) \dots (-2, -1.5) \dots (1, 0.5) \dots (3.2, 3);
                                                                                       GETTING STARTED
for i = 0 upto n :
xx[i] := (i/n)*stopx + (1 - i/n)*startx :
                                                                                       BUILDING BLOCKS
 yy[i] := ypart (((xx[i], -5) -- (xx[i], 5)) intersectionpoint fun);
                                                                                          KEYWORDS
if i > 0:
   fill ((xx[i - 1], yy[i] ) --
                                                                                         INLINE MATH
         (xx[i], yy[i] ) --
         (xx[i], yy[i - 1]) --
                                                                                       DISPLAYED MATH
         (xx[i - 1], yy[i - 1]) -- cycle)
                                                                                       EOUATION LABELS
        scaled u withcolor "C:2" ;
   draw ((xx[i - 1], yy[i]) --
                                                                                        ENUNCIATIONS
         (xx[i], yy[i]))
        scaled u withcolor "C:1" :
                                                                                        ILLUSTRATIONS
   draw ((xx[i - 1], yy[i - 1]) --
         (xx[i], yy[i - 1]))
                                                                                         MATH FONTS
        scaled u withcolor "C:3";
                                                                                       MEANINGFUL MATH
fi:
endfor
                                                                                        MISCELLANEOUS
draw fun scaled u ;
                                                                                       UNICODE SYMBOLS
                                                                                           SETUPS
fill (unitsquare xyscaled ((6/n),yy[n] - yy[0])
                  shifted (4,yy[0]))
                                                                                        BIBLIOGRAPHY
                  scaled u
```

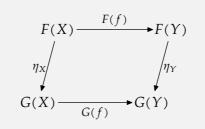



```
INTRODUCTION
z6 = (z2 - z3) intersectionpoint (z4 - z0);
                                                                                         GETTING STARTED
drawoptions(withcolor "C:3") ;
                                                                                         BUILDING BLOCKS
draw z2 -- z3 &&
                                                                                           KEYWORDS
     z0 -- z4 &&
     z1 -- z5 ;
                                                                                          INLINE MATH
                                                                                         DISPLAYED MATH
anglemethod := 2;
anglelength := 0.2u;
                                                                                         EQUATION LABELS
draw anglebetween(z3 -- z2, z3 -- z0, "");
                                                                                          ENUNCIATIONS
draw anglebetween(z4 -- z0, z4 -- z1, "");
draw anglebetween(z5 -- z1, z5 -- z2, "");
                                                                                         ILLUSTRATIONS
drawoptions() ;
                                                                                           MATH FONTS
                                                                                        MEANINGFUL MATH
draw z0 -- z1 -- z2 -- cycle withstacking 2 ;
drawpoints z6 withpen pencircle scaled 3pt
                                                                                         MISCELLANEOUS
               withcolor "C:1" :
                                                                                        UNICODE SYMBOLS
\stopMPcode
                                                                                            SETUPS
```



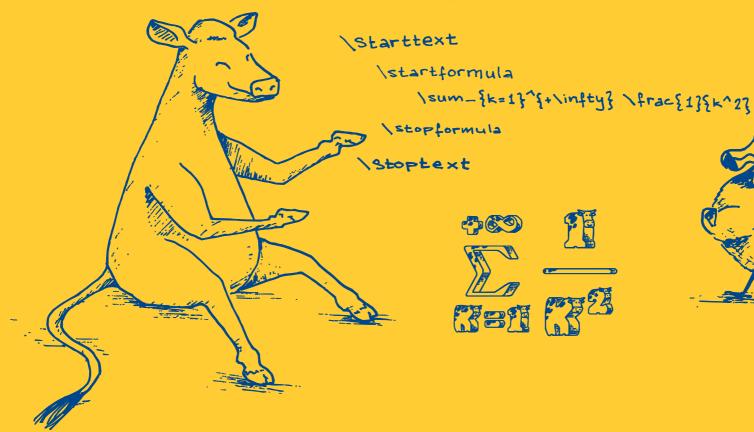

```
INTRODUCTION
    endfor;
                                                                                              GETTING STARTED
    draw c :
    draw for i = 1 upto n : iz[i] -- endfor cycle ;
                                                                                              BUILDING BLOCKS
    \stopuseMPgraphic
                                                                                                KEYWORDS
    \startuseMPgraphic{circle-outer}
                                                                                               INLINE MATH
    \includeMPgraphic{circle-base}
    fill (origin -- oz[1] -- oz[8] -- cycle) withcolor "C:1";
                                                                                              DISPLAYED MATH
                                                                                              EQUATION LABELS
    for i = 1 upto n:
      draw origin -- oz[i] dashed evenly;
                                                                                               ENUNCIATIONS
    endfor;
                                                                                              ILLUSTRATIONS
    draw c ;
                                                                                                MATH FONTS
    draw for i = 1 upto n : oz[i] -- endfor cycle ;
    \stopuseMPgraphic
                                                                                             MEANINGFUL MATH
8.4 Diagrams
                                                                                              MISCELLANEOUS
    We show a few diagrams, but refer to Alan's nice module /tex/texmf-context/doc/con-
                                                                                             UNICODE SYMBOLS
    text/documents/general/manuals/nodes.pdf for details.
                                                                                                 SETUPS
    \startMPcode
      numeric u ; u := 1cm ;
                                                                                               BIBLIOGRAPHY
      crossingscale := .5u ;
```



\stopMPcode



\setupframed
[node]
[offset=.5TS]

```
INTRODUCTION
\setupframed
  [smallnode]
                                                                                       GETTING STARTED
  [offset=.1TS]
                                                                                       BUILDING BLOCKS
\startMPcode
                                                                                         KEYWORDS
save nodepath ; save l ; l = 5ahlength ;
save A, B, C, D, E;
                                                                                        INLINE MATH
pair A, B, C, D, E ;
                                                                                       DISPLAYED MATH
A.i = 0; A = makenode(A.i, "\node{\im{\pi 1(X^1, x 0)}}");
                                                                                       EQUATION LABELS
B.i = 1 ; B = makenode(B.i, "\node{\im{\pi 1(Y,y 0)}}") ;
C.i = 2 ; C = makenode(C.i, "\node{\im{\pi 1(X, x 0)}}") ;
                                                                                        ENUNCIATIONS
A = origin;
                                                                                       ILLUSTRATIONS
B = A + betweennodes.rt(nodepath, A.i, nodepath, B.i) + (21,0);
C = .5[A,B] + (0,-3l);
                                                                                        MATH FONTS
                                                                                      MEANINGFUL MATH
for i = A.i, B.i, C.i :
 draw node(i) ;
                                                                                       MISCELLANEOUS
endfor
                                                                                      UNICODE SYMBOLS
drawarrow fromto.llft ( 0,A.i,C.i,"\smallnode{\im{i {*}}}");
                                                                                          SETUPS
drawarrow fromto.top ( 0,A.i,B.i,"\smallnode{\im{f {*}}}");
drawarrow fromto.lrt ( 0,C.i,B.i,"\smallnode{\im{\varphi}}");
                                                                                        BIBLIOGRAPHY
\stopMPcode
```

INTRODUCTION
GETTING STARTED
BUILDING BLOCKS
KEYWORDS
INLINE MATH
DISPLAYED MATH
EQUATION LABELS
ENUNCIATIONS
ILLUSTRATIONS
MATH FONTS
MEANINGFUL MATH
MISCELLANEOUS
UNICODE SYMBOLS
SETUPS
BIBLIOGRAPHY

\setupbodyfont[koeieletters]

125

9 Math fonts

9.1 Selecting a font

The default font in $ConT_EXt$ is the Computer Modern based Latin Modern, with Latin Modern Math as math font. By running \setupbodyfont with the right arguments the font setup can be changed. For example,

\setupbodyfont[pagella]

will change the font into T_EXGyre Pagella (with the corresponding math font T_EXGyre Pagella Math), that is used in this document.

Several fonts with math support follow with an installation of ConTEXt, and the aim here is to show a small sample of all of them (see Intermezzo 9.1). In addition to the fonts that are shipped with the installation, there is also support (read: ready-made type scripts) for some commercial fonts, such as Cambria and Lucida Bright. We do not own any copy of the commercial Minion Math font, and hence we do not support it.

Users shall be aware that the coverage of symbols in math fonts varies. Some might be done by tweaking an existing glyph. If you miss some glyph you can write to us, but please also add an example of real usage.

There are some more free fonts that are not shipped with ConT_EXt. We have not yet written any complete setup for the fonts Fira Math, GFS Neohellenic, Lete Sans Math, New Computer Modern Math, Noto Sans Math or Plex Math, since they still seem to be under development or are incomplete.

GETTING STARTED

KEYWORDS

INLINE MATH

DISPLAYED MATH

EQUATION LABELS

ENUNCIATIONS

ILLUSTRATIONS

MATH FONTS

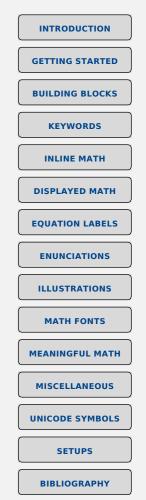
MEANINGFUL MATH

MISCELLANEOUS

UNICODE SYMBOLS

SETUPS

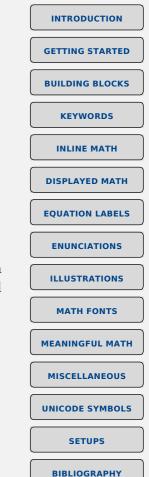
antykwa**	bonum	cambria	concrete
dejavu	ebgaramond	erewhon	iwona**
kpfonts*	kurier**	libertinus	lucida
modern	pagella	schola	stixtwo
termes	xcharter		


Intermezzo 9.1 Fonts with support in ConT_EXt. The kpfonts is marked with *. It comes in more than one weight and style. The fonts marked with ** are the only ones that have math fonts in Type1 format (they also come in several weights). All the other fonts are Opentype fonts.

It is also possible to mix fonts in different ways than the ones mentioned here. This is typically done with the help of typescript files, and is discussed elsewhere. It can be good to have in mind, though, to enable the loading of existing goodie files if you use a supported math font. The best way to see how this is done is probably by studying some existing typescript file.

If one is not happy with the calligraphic and/or script alphabets, or if there is only one, we can use the mathextra font feature to add another one. These are pre-defined in the common-math.lfg goodie file. For T_EXGyre Pagella Math we can do this.

- \m {\mathcal ABCDEFGHIJKLMNOPQRSTUVWXYZ}\par
- \m {\mathscr ABCDEFGHIJKLMNOPQRSTUVWXYZ}


\definefontfeature
[mathextra]

[mathextra] [eulertocalligraphic=yes, rsfsuprighttoscript=yes] \switchtobodyfont[pagella] \m {\mathcal ABCDEFGHIJKLMNOPQRSTUVWXYZ}\par \m {\mathscr ABCDEFGHIJKLMNOPQRSTUVWXYZ} ABCDEFGHIJKLMNOPQRSTUVWXYZ ABCDEFGHIJKLMNOPQRSTUVWXYZ ABCDEFGHIJKLMNOPQRSTUVWXYZ ABCDEFGHIJKLMNOPQRSTUVWXYZ

Here we used the calligraphic alphabet from Euler Math and the script alphabet from the Ralph Smith's Formal Script font. Other options are moderntocalligraphic=yes and rsfstoscript=yes.

In a document like this one where we do several fontswitches, one shall not use setupbodyfont everywhere. For Antykwa, for example, one shall have \usebodyfont[antykwa] before \starttext and then switch to it with \switchtobodyfont[antykwa].

9.2 antykwa

A paragraph from [Wil95]:

Assume for the moment that $F_{\mathfrak{P}}$ is \mathbf{Q}_p . In this case $\hat{E}_{\mathfrak{P}}$ is isomorphic to the Lubin–Tate group associated to $\pi x + x^p$ where $\pi = \varphi(\mathfrak{p})$. Then letting ω_n be nontrivial roots of $[\pi^n](x) = 0$ chosen so that $[\pi](\omega_n) = \omega_{n-1}$, it was shown in [CW] that to each element $u = \lim_{n \to \infty} u_n \in U_{\infty,\mathfrak{P}}$ there corresponded a unique power series $f_u(T) \in \mathbf{Z}_p[\![T]\!]^{\times}$ such that $f_u(\omega_n) = u_n$ for $n \ge 1$. The definition of $\delta_{k,\mathfrak{P}}$ ($k \ge 1$) in this case was then

$$\delta_{k,\mathfrak{P}}(u) = \left(\frac{1}{\lambda'(T)}\frac{d}{dT}\right)^k \log f_u(T)\Big|_{T=0}.$$

It is easy to see that $\delta_{k,\mathfrak{P}}$ gives a homomorphism: $U_{\infty} \to U_{\infty,\mathfrak{P}} \to \mathcal{O}_{\mathfrak{p}}$ satisfying $\delta_{k,\mathfrak{P}}(\varepsilon^{\sigma}) = \theta(\sigma)^k \delta_{k,\mathfrak{P}}(\varepsilon)$ where θ : Gal $(\overline{F}/F) \to \mathcal{O}_{\mathfrak{p}}^{\times}$ is the character giving the action on $E[\mathfrak{p}^{\infty}]$.

A few formulas:

$$\begin{split} \int_{0}^{\pi/2} \ln(\sin x) \, dx &= -\frac{\pi}{2} \ln 2, \quad \frac{1}{\prod_{p=2}^{p_m} (1-1/p^2)} = \prod_{p=2}^{p_m} \sum_{k=0}^{+\infty} \frac{1}{p^{2k'}} \\ &\sqrt{2 + \sqrt{2 + \sqrt{2 + \dots}}} = 2, \quad \frac{1-x^2}{(1+x)^2} = \frac{1-x}{1+x'}, \\ \begin{pmatrix} n \\ 4 \end{pmatrix} &= \frac{n(n-1)(n-2)(n-3)}{1 \cdot 2 \cdot 3 \cdot 4}, \quad t_{n+1} := \sup \left\{ t < t_n : |\xi(t) - \xi(t_n)| = 2^{-j} \right\}. \end{split}$$

INTRODUCTION

GETTING STARTED

BUILDING BLOCKS

KEYWORDS

INLINE MATH

DISPLAYED MATH

EQUATION LABELS

ENUNCIATIONS

ILLUSTRATIONS

MATH FONTS

MEANINGFUL MATH

MISCELLANEOUS

UNICODE SYMBOLS

SETUPS

A few alphabets:

\mathit \mathrm

\mathss \mathtt

\mathcal

\mathscr \mathfrak

\mathbb

ABCDEFGHIJKLMNOPQRSTUVWXYZ

lowercase greek $\alpha\beta\gamma\delta\epsilon\zeta\eta\theta\iota\kappa\lambda\mu\nu\xi\sigma\rho\varsigma\sigma\tau\nu\phi\chi\psi\omega$

9.3 antykwa-light

A paragraph from [Wil95]:

Assume for the moment that $F_{\mathfrak{P}}$ is Q_p . In this case $\hat{E}_{\mathfrak{P}}$ is isomorphic to the Lubin–Tate group associated to $\pi x + x^p$ where $\pi = \varphi(\mathfrak{p})$. Then letting ω_n be nontrivial roots of $[\pi^n](x) = 0$ chosen so that $[\pi](\omega_n) = \omega_{n-1}$, it was shown in [CW] that to each element $u = \lim_{n \to \infty} u_n \in U_{\infty,\mathfrak{P}}$ there corresponded a unique power series $f_u(T) \in \mathbb{Z}_p[\![T]\!]^{\times}$ such that $f_u(\omega_n) = u_n$ for $n \ge 1$. The definition of $\delta_{k,\mathfrak{P}}$ $(k \ge 1)$ in this case was then

$$\delta_{k,\mathfrak{P}}(u) = \left(\frac{1}{\lambda'(T)}\frac{d}{dT}\right)^k \log f_u(T) \bigg|_{T=0}$$

It is easy to see that $\delta_{k,\mathfrak{P}}$ gives a homomorphism: $U_{\infty} \to U_{\infty,\mathfrak{P}} \to \mathcal{O}_{\mathfrak{p}}$ satisfying $\delta_{k,\mathfrak{P}}(\varepsilon^{\sigma}) = \theta(\sigma)^k \delta_{k,\mathfrak{P}}(\varepsilon)$ where $\theta: \operatorname{Gal}(F/F) \to \mathcal{O}_{\mathfrak{p}}^{\times}$ is the character giving the action on $E[\mathfrak{p}^{\infty}].$

A few formulas:

$$\int_{0}^{\pi/2} \ln(\sin x) \, dx = -\frac{\pi}{2} \ln 2, \quad \frac{1}{\prod_{p=2}^{p_m} (1 - 1/p^2)} = \prod_{p=2}^{p_m} \sum_{k=0}^{+\infty} \frac{1}{p^{2k'}}$$

$$\int_{0}^{\pi/2} \ln(\sin x) \, dx = -\frac{\pi}{2} \ln 2, \quad \frac{1}{\prod_{p=2}^{p_m} (1 - 1/p^2)} = \prod_{p=2}^{p_m} \sum_{k=0}^{+\infty} \frac{1}{p^{2k'}}$$

$$\int_{0}^{\pi/2} \ln(\sin x) \, dx = -\frac{\pi}{2} \ln 2, \quad \frac{1}{\prod_{p=2}^{p_m} (1 - 1/p^2)} = \prod_{p=2}^{p_m} \sum_{k=0}^{+\infty} \frac{1}{p^{2k'}}$$

$$\int_{0}^{\pi/2} \ln(\sin x) \, dx = -\frac{\pi}{2} \ln 2, \quad \frac{1}{\prod_{p=2}^{p_m} (1 - 1/p^2)} = \prod_{p=2}^{p_m} \sum_{k=0}^{+\infty} \frac{1}{p^{2k'}}$$

$$\int_{0}^{\pi/2} \ln(\sin x) \, dx = -\frac{\pi}{2} \ln 2, \quad \frac{1}{\prod_{p=2}^{p_m} (1 - 1/p^2)} = \prod_{p=2}^{p_m} \sum_{k=0}^{+\infty} \frac{1}{p^{2k'}}$$

$$\int_{0}^{\pi/2} \ln(\sin x) \, dx = -\frac{\pi}{2} \ln 2, \quad \frac{1}{\prod_{p=2}^{p_m} (1 - 1/p^2)} = \prod_{p=2}^{p_m} \sum_{k=0}^{+\infty} \frac{1}{p^{2k'}}$$

$$\int_{0}^{\pi/2} \ln(\sin x) \, dx = -\frac{\pi}{2} \ln 2, \quad \frac{1}{\prod_{p=2}^{p_m} (1 - 1/p^2)} = \frac{1}{p^{2k'}} \sum_{k=0}^{\infty} \frac{1}{p^{2k'}}$$

$$\int_{0}^{\pi/2} \ln(\sin x) \, dx = -\frac{\pi}{2} \ln 2, \quad \frac{1}{(1 + x)^2} = \frac{1}{1 + x'}$$

$$\int_{0}^{\pi/2} \ln(1 - 1/p^2) \, dx = -\frac{\pi}{2} \ln 2, \quad \frac{1}{(1 + x)^2} = \frac{1}{1 + x'} \sum_{k=0}^{\infty} \frac{1}{p^{2k'}} \sum_{k=0}^{\infty$$

INTRODUCTION

GETTING STARTED

BUILDING BLOCKS

KEYWORDS

INLINE MATH

DISPLAYED MATH

EQUATION LABELS

ENUNCIATIONS

ILLUSTRATIONS

MATH FONTS

MATH

MBOLS

PHY

A few alphabets:

SETUPS

9.4 antykwa-cond

A paragraph from [Wil95]:

Assume for the moment that $F_{\mathfrak{P}}$ is \mathbf{Q}_p . In this case $\hat{E}_{\mathfrak{P}}$ is isomorphic to the Lubin–Tate group associated to $\pi x + x^p$ where $\pi = \varphi(\mathfrak{p})$. Then letting ω_n be nontrivial roots of $[\pi^n](x) = 0$ chosen so that $[\pi](\omega_n) = \omega_{n-1}$, it was shown in [CW] that to each element $u = \lim_{n \to \infty} u_n \in U_{\infty,\mathfrak{P}}$ there corresponded a unique power series $f_u(T) \in \mathbf{Z}_p[\![T]\!]^{\times}$ such that $f_u(\omega_n) = u_n$ for $n \ge 1$. The definition of $\delta_{k,\mathfrak{P}}$ $(k \ge 1)$ in this case was then

$$\delta_{k,\mathfrak{P}}(u) = \left(\frac{1}{\lambda'(T)}\frac{d}{dT}\right)^k \log f_u(T) \bigg|_{T=0}$$

It is easy to see that $\delta_{k,\mathfrak{P}}$ gives a homomorphism: $U_{\infty} \to U_{\infty,\mathfrak{P}} \to \mathcal{O}_{\mathfrak{p}}$ satisfying $\delta_{k,\mathfrak{P}}(\varepsilon^{\sigma}) = \theta(\sigma)^{k} \delta_{k,\mathfrak{P}}(\varepsilon)$ where θ : $\operatorname{Gal}(\overline{F}/F) \to \mathcal{O}_{\mathfrak{p}}^{\times}$ is the character giving the action on $E[\mathfrak{p}^{\infty}]$.

A few formulas:

$$\int_{0}^{\pi/2} \ln(\sin x) \, dx = -\frac{\pi}{2} \ln 2, \quad \frac{1}{\prod_{p=2}^{p_m} (1-1/p^2)} = \prod_{p=2}^{p_m} \sum_{k=0}^{+\infty} \frac{1}{p^{2k'}}$$

$$\int_{0}^{1} \ln(\sin x) \, dx = -\frac{\pi}{2} \ln 2, \quad \frac{1}{\prod_{p=2}^{p_m} (1-1/p^2)} = \prod_{p=2}^{p_m} \sum_{k=0}^{+\infty} \frac{1}{p^{2k'}}$$

$$\int_{0}^{1} \ln(\sin x) \, dx = -\frac{\pi}{2} \ln 2, \quad \frac{1}{\prod_{p=2}^{p_m} (1-1/p^2)} = \prod_{p=2}^{p_m} \sum_{k=0}^{+\infty} \frac{1}{p^{2k'}}$$

$$\int_{0}^{1} \ln(\sin x) \, dx = -\frac{\pi}{2} \ln 2, \quad \frac{1}{\prod_{p=2}^{p_m} (1-1/p^2)} = \prod_{p=2}^{p_m} \sum_{k=0}^{+\infty} \frac{1}{p^{2k'}}$$

$$\int_{0}^{1} \ln(\sin x) \, dx = -\frac{\pi}{2} \ln 2, \quad \frac{1}{\prod_{p=2}^{p_m} (1-1/p^2)} = \prod_{p=2}^{p_m} \sum_{k=0}^{+\infty} \frac{1}{p^{2k'}}$$

$$\int_{0}^{1} \ln(\sin x) \, dx = -\frac{\pi}{2} \ln 2, \quad \frac{1}{\prod_{p=2}^{p_m} (1-1/p^2)} = \prod_{p=2}^{p_m} \sum_{k=0}^{+\infty} \frac{1}{p^{2k'}}$$

$$\int_{0}^{1} \ln(\sin x) \, dx = -\frac{\pi}{2} \ln 2, \quad \frac{1}{\prod_{p=2}^{p_m} (1-1/p^2)} = \frac{1}{p^{2k'}}$$

$$\int_{0}^{1} \ln(\sin x) \, dx = -\frac{\pi}{2} \ln 2, \quad \frac{1}{\prod_{p=2}^{p_m} (1-1/p^2)} = \frac{1}{p^{2k'}}$$

$$\int_{0}^{1} \ln(\sin x) \, dx = -\frac{\pi}{2} \ln 2, \quad \frac{1}{(1+x)^2} = \frac{1}{1+x'}$$

$$\int_{0}^{1} \ln(1-1/p^2) \, dx = -\frac{\pi}{2} \ln 2, \quad \frac{1}{(1+x)^2} = \frac{1}{1+x'}$$

$$\int_{0}^{1} \ln(1-1/p^2) \, dx = -\frac{\pi}{2} \ln 2, \quad \frac{1}{(1+x)^2} = \frac{1}{1+x'}$$

$$\int_{0}^{1} \ln(1-1/p^2) \, dx = -\frac{\pi}{2} \ln 2, \quad \frac{1}{(1+x)^2} = \frac{1}{1+x'}$$

$$\int_{0}^{1} \ln(1-1/p^2) \, dx = -\frac{\pi}{2} \ln 2, \quad \frac{1}{(1+x)^2} = \frac{1}{1+x'}$$

$$\int_{0}^{1} \ln(1-1/p^2) \, dx = -\frac{\pi}{2} \ln 2, \quad \frac{1}{(1+x)^2} = \frac{1}{1+x'}$$

$$\int_{0}^{1} \ln(1-1/p^2) \, dx = -\frac{\pi}{2} \ln 2, \quad \frac{1}{(1+x)^2} = \frac{1}{1+x'}$$

$$\int_{0}^{1} \ln(1-1/p^2) \, dx = -\frac{\pi}{2} \ln 2, \quad \frac{1}{(1+x)^2} = \frac{1}{1+x'}$$

$$\int_{0}^{1} \ln(1-1/p^2) \, dx = -\frac{\pi}{2} \ln 2, \quad \frac{1}{(1+x)^2} = \frac{\pi}{2} \ln 2, \quad \frac{1}{(1+x$$

INTRODUCTION

GETTING STARTED

BUILDING BLOCKS

KEYWORDS

INLINE MATH

DISPLAYED MATH

EQUATION LABELS

ENUNCIATIONS

ILLUSTRATIONS

MATH FONTS

A few alphabets:

\mathit \mathrm

\mathss

\mathtt

\mathcal

\mathscr \mathfrak

\mathbb

9.5 bonum

A paragraph from [Wil95]:

Assume for the moment that $F_{\mathfrak{P}}$ is \mathbf{Q}_p . In this case $\hat{E}_{\mathfrak{P}}$ is isomorphic to the Lubin– Tate group associated to $\pi x + x^p$ where $\pi = \varphi(\mathfrak{P})$. Then letting ω_n be nontrivial roots of $[\pi^n](x) = 0$ chosen so that $[\pi](\omega_n) = \omega_{n-1}$, it was shown in [CW] that to each element $u = \varprojlim u_n \in U_{\infty,\mathfrak{P}}$ there corresponded a unique power series $f_u(T) \in \mathbf{Z}_p[\![T]\!]^{\times}$ such that $f_u(\omega_n) = u_n$ for $n \ge 1$. The definition of $\delta_{k,\mathfrak{P}}$ $(k \ge 1)$ in this case was then

$$\delta_{k,\mathfrak{P}}(u) = \left(\frac{1}{\lambda'(T)}\frac{d}{dT}\right)^k \log f_u(T) \bigg|_{T=0}$$

It is easy to see that $\delta_{k,\mathfrak{p}}$ gives a homomorphism: $U_{\infty} \to U_{\infty,\mathfrak{p}} \to \mathcal{O}_{\mathfrak{p}}$ satisfying $\delta_{k,\mathfrak{p}}(\varepsilon^{\sigma}) = \theta(\sigma)^k \delta_{k,\mathfrak{p}}(\varepsilon)$ where $\theta: \operatorname{Gal}(\overline{F}/F) \to \mathcal{O}_{\mathfrak{p}}^{\times}$ is the character giving the action on $E[\mathfrak{p}^{\infty}]$.

A few formulas:

$$\begin{split} \int_{0}^{\pi/2} \ln(\sin x) \, dx &= -\frac{\pi}{2} \ln 2, \quad \frac{1}{\prod_{p=2}^{p_m} (1 - 1/p^2)} = \prod_{p=2}^{p_m} \sum_{k=0}^{+\infty} \frac{1}{p^{2k}}, \\ \sqrt{2 + \sqrt{2 + \sqrt{2 + \dots}}} &= 2, \quad \frac{1 - x^2}{(1 + x)^2} = \frac{1 - x}{1 + x}, \\ \binom{n}{4} &= \frac{n(n-1) \left(n-2\right) \left(n-3\right)}{1 \cdot 2 \cdot 3 \cdot 4}, \quad t_{n+1} \coloneqq \sup\left\{t < t_n \colon |\xi(t) - \xi(t_n)| = 2^{-j}\right\} \end{split}$$

A few alphabets:

\mathit

\mathss

\mathtt

\mathscr

\mathbb

\mathcal

\mathfrak

\mathrm

ABCDEFGHIJKLMNOPQRSTUVWXYZ

UBCDEFESIJREMNOPORSEUBBEN3

ABCDEFGHIJKLMNOPQRSTUVWXYZ

ABCDEFGHIJKLMNOPQRSTUVWXYZ

lowercase greek $\alpha\beta\gamma\delta\epsilon\zeta\eta\theta\iota\kappa\lambda\mu\nu\xi\sigma\pi\rho\varsigma\sigma\iota\nu\varphi\chi\psi\omega$

INTRODUCTION **GETTING STARTED** *ABCDEFGHIJKLMNOPQRSTUVWXYZ* **BUILDING BLOCKS KEYWORDS** ABCDEFGHTZKLMNOPQRLTUVWXYZ **INLINE MATH** ABCDEFGHIJKLMNOPQRFTUVWXYZ **DISPLAYED MATH** ABCDEFGHIJKLMNOPQRSTUVWXYZ **EQUATION LABELS** uppercase greek $AB\Gamma \Delta EZH\Theta IK\Lambda MNEO\Pi P\Theta \Sigma T \Upsilon \Phi X \Psi \Omega$ **ENUNCIATIONS ILLUSTRATIONS** MATH FONTS **MEANINGFUL MATH** MISCELLANEOUS UNICODE SYMBOLS SETUPS

9.6 cambria

A paragraph from [Wil95]:

Assume for the moment that $F_{\mathfrak{P}}$ is \mathbf{Q}_p . In this case $\hat{E}_{\mathfrak{P}}$ is isomorphic to the Lubin–Tate group associated to $\pi x + x^p$ where $\pi = \varphi(\mathfrak{p})$. Then letting ω_n be nontrivial roots of $[\pi^n](x) = 0$ chosen so that $[\pi](\omega_n) = \omega_{n-1}$, it was shown in [CW] that to each element $u = \lim_{n \to \infty} u_n \in U_{\infty,\mathfrak{P}}$ there corresponded a unique power series $f_u(T) \in \mathbf{Z}_p[[T]]^{\times}$ such that $f_u(\omega_n) = u_n$ for $n \ge 1$. The definition of $\delta_{k,\mathfrak{P}}$ $(k \ge 1)$ in this case was then

$$\delta_{k,\mathfrak{P}}(u) = \left(\frac{1}{\lambda'(T)}\frac{d}{dT}\right)^k \log f_u(T) \bigg|_{T=0}$$

It is easy to see that $\delta_{k,\mathfrak{P}}$ gives a homomorphism: $U_{\infty} \to U_{\infty,\mathfrak{P}} \to \mathcal{O}_{\mathfrak{p}}$ satisfying $\delta_{k,\mathfrak{P}}(\varepsilon^{\sigma}) = \theta(\sigma)^k \delta_{k,\mathfrak{P}}(\varepsilon)$ where θ : Gal $(\overline{F}/F) \to \mathcal{O}_{\mathfrak{p}}^{\times}$ is the character giving the action on $E[\mathfrak{p}^{\infty}]$.

A few formulas:

$$\int_{0}^{\pi/2} \ln(\sin x) \, dx = -\frac{\pi}{2} \ln 2, \quad \frac{1}{\prod_{p=2}^{p_m} (1 - 1/p^2)} = \prod_{p=2}^{p_m} \sum_{k=0}^{+\infty} \frac{1}{p^{2k'}},$$
$$\sqrt{2 + \sqrt{2 + \sqrt{2 + \dots}}} = 2, \quad \frac{1 - x^2}{(1 + x)^2} = \frac{1 - x}{1 + x'},$$
$$\binom{n}{4} = \frac{n(n-1)(n-2)(n-3)}{1 \cdot 2 \cdot 3 \cdot 4}, \quad t_{n+1} := \sup\{t < t_n : |\xi(t) - \xi(t_n)| = 2^{-j}\}.$$

325

INTRODUCTION **GETTING STARTED BUILDING BLOCKS KEYWORDS INLINE MATH DISPLAYED MATH EQUATION LABELS** ENUNCIATIONS ILLUSTRATIONS **MATH FONTS MEANINGFUL MATH** MISCELLANEOUS UNICODE SYMBOLS SETUPS **BIBLIOGRAPHY**

A few alphabets:

\mathit	ABCDEFGHIJKLMNOPQRSTUVWXYZ
\mathrm	ABCDEFGHIJKLMNOPQRSTUVWXYZ
\mathss	ABCDEFGHIJKLMNOPQRSTUVWXYZ
\mathtt	ABCDEFGHIJKLMNOPQRSTUVWXYZ
\mathcal	ABCDEFGHIJKLMNOPQRSTUVWXYZ
\mathscr	ABCDEFGHIJKLMNOPQRSTUVWXYZ
\mathfrak	ABCDEFG5IJKLMNDPQKSLUVWXY3
\mathbb	ABCDEFGHIJKLMNOPQRSTUVWXYZ
lowercase greek	αβγδεζηθικλμνξοπρςστυφχψω
uppercase greek	ΑΒΓΔΕΖΗΘΙΚΛΜΝΞΟΠΡθΣΤΥΦΧΨΩ

9.7 concrete

A paragraph from [Wil95]:

Assume for the moment that $F_{\mathfrak{P}}$ is \mathbf{Q}_p . In this case $\hat{E}_{\mathfrak{P}}$ is isomorphic to the Lubin– Tate group associated to $\pi x + x^p$ where $\pi = \varphi(\mathfrak{p})$. Then letting ω_n be nontrivial roots of $[\pi^n](x) = 0$ chosen so that $[\pi](\omega_n) = \omega_{n-1}$, it was shown in [CW] that to each element $u = \varprojlim u_n \in U_{\infty,\mathfrak{P}}$ there corresponded a unique power series $f_u(T) \in \mathbf{Z}_p[\![T]\!]^{\times}$ such that $f_u(\omega_n) = u_n$ for $n \ge 1$. The definition of $\delta_{k,\mathfrak{P}}$ $(k \ge 1)$ in this case was then

$$\delta_{k,\mathfrak{P}}(u) = \left(rac{1}{\lambda'(T)}rac{d}{dT}
ight)^k \log f_u(T)
ight|_{T=0}$$

It is easy to see that $\delta_{k,\mathfrak{P}}$ gives a homomorphism: $U_{\infty} \to U_{\infty,\mathfrak{P}} \to \mathcal{O}_{\mathfrak{p}}$ satisfying $\delta_{k,\mathfrak{P}}(\varepsilon^{\sigma}) = \theta(\sigma)^{k} \delta_{k,\mathfrak{P}}(\varepsilon)$ where $\theta: \operatorname{Gal}(\overline{F}/F) \to \mathcal{O}_{\mathfrak{p}}^{\times}$ is the character giving the action on $E[\mathfrak{p}^{\infty}]$.

A few formulas:

$$\begin{split} \int_{0}^{\pi/2} \ln(\sin x) \, dx &= -\frac{\pi}{2} \ln 2, \quad \frac{1}{\prod_{p=2}^{p_m} (1-1/p^2)} = \prod_{p=2}^{p_m} \sum_{k=0}^{+\infty} \frac{1}{p^{2k}}, \\ \sqrt{2 + \sqrt{2 + \sqrt{2 + \dots}}} &= 2, \quad \frac{1-x^2}{(1+x)^2} = \frac{1-x}{1+x}, \\ \binom{n}{4} &= \frac{n(n-1)(n-2)(n-3)}{1 \cdot 2 \cdot 3 \cdot 4}, \quad t_{n+1} \coloneqq \sup\left\{t < t_n : |\xi(t) - \xi(t_n)| = 2^{-j}\right\}. \end{split}$$

INTRODUCTION **GETTING STARTED BUILDING BLOCKS KEYWORDS INLINE MATH DISPLAYED MATH EQUATION LABELS ENUNCIATIONS ILLUSTRATIONS** MATH FONTS **MEANINGFUL MATH** MISCELLANEOUS UNICODE SYMBOLS SETUPS **BIBLIOGRAPHY**

\mathit \mathrm

\mathss

\mathtt

\mathcal

\mathscr

\mathbb

\mathfrak

INTRODUCTION **GETTING STARTED** ABCDEFGHIJKLMNOPQRSTUVWXYZ ABCDEFGHIJKLMNOPQRSTUVWXYZ **BUILDING BLOCKS** ABCDEFGHIJKLMNOPQRSTUVWXYZ ABCDEFGHIJKLMNOPQRSTUVWXYZ **KEYWORDS** ABCDEFGHIJKLMNOPQRSTUVWXYZ ABCDEFGHIJKLMNOPQRSTUVWXYZ **INLINE MATH** ABEDEFEHIJRLMNDPDRSTUVWX93 ABCDEFGHIJKLMNOPQRSTUVWXYZ **DISPLAYED MATH** lowercase greek $\alpha\beta\gamma\delta\epsilon\zeta\eta\theta\iota\kappa\lambda\mu\nu\xi\sigma\pi\rho\varsigma\sigma\tau\upsilon\varphi\chi\psi\omega$ uppercase greek $AB\Gamma \Delta EZH\Theta IK\Lambda MN \Xi O\Pi P\Theta \Sigma T \Upsilon \Phi X \Psi \Omega$ **EQUATION LABELS ENUNCIATIONS** ILLUSTRATIONS MATH FONTS **MEANINGFUL MATH** MISCELLANEOUS UNICODE SYMBOLS SETUPS

9.8 dejavu

A paragraph from [Wil95]:

Assume for the moment that $F_{\mathfrak{P}}$ is \mathbf{Q}_p . In this case $\hat{E}_{\mathfrak{P}}$ is isomorphic to the Lubin-Tate group associated to $\pi x + x^p$ where $\pi = \varphi(\mathfrak{p})$. Then letting ω_n be nontrivial roots of $[\pi^n](x) = 0$ chosen so that $[\pi](\omega_n) = \omega_{n-1}$, it was shown in [CW] that to each element $u = \varprojlim u_n \in U_{\infty,\mathfrak{P}}$ there corresponded a unique power series $f_u(T) \in \mathbf{Z}_p[T]^{\times}$ such that $f_u(\omega_n) = u_n$ for $n \ge 1$. The definition of $\delta_{k,\mathfrak{P}}$ ($k \ge 1$) in this case was then

$$\delta_{k,\mathfrak{P}}(u) = \left(\frac{1}{\lambda'(T)}\frac{d}{dT}\right)^k \log f_u(T) \bigg|_{T=0}$$

It is easy to see that $\delta_{k,\mathfrak{P}}$ gives a homomorphism: $U_{\infty} \to U_{\infty,\mathfrak{P}} \to \mathcal{O}_{\mathfrak{p}}$ satisfying $\delta_{k,\mathfrak{P}}(\varepsilon^{\sigma}) = \theta(\sigma)^k \delta_{k,\mathfrak{P}}(\varepsilon)$ where $\theta: \operatorname{Gal}(\overline{F}/F) \to \mathcal{O}_{\mathfrak{p}}^{\times}$ is the character giving the action on $E[\mathfrak{p}^{\infty}]$.

A few formulas:

$$\begin{split} \int_{0}^{\pi/2} \ln(\sin x) \, dx &= -\frac{\pi}{2} \ln 2, \quad \frac{1}{\prod_{p=2}^{p_m} (1 - 1/p^2)} = \prod_{p=2}^{p_m} \sum_{k=0}^{+\infty} \frac{1}{p^{2k}}, \\ \sqrt{2 + \sqrt{2 + \sqrt{2 + \dots}}} &= 2, \quad \frac{1 - x^2}{(1 + x)^2} = \frac{1 - x}{1 + x}, \\ \frac{n}{4} &= \frac{n(n-1)(n-2)(n-3)}{1 \cdot 2 \cdot 3 \cdot 4}, \quad t_{n+1} := \sup\{t < t_n : |\xi(t) - \xi(t_n)| = 2^{-j}\} \end{split}$$

INTRODUCTION **GETTING STARTED BUILDING BLOCKS KEYWORDS INLINE MATH DISPLAYED MATH EQUATION LABELS ENUNCIATIONS ILLUSTRATIONS** MATH FONTS **MEANINGFUL MATH** MISCELLANEOUS UNICODE SYMBOLS SETUPS **BIBLIOGRAPHY**

INTRODUCTION **GETTING STARTED BUILDING BLOCKS KEYWORDS INLINE MATH** DISPLAYED MATH **EQUATION LABELS** ENUNCIATIONS ILLUSTRATIONS **MATH FONTS MEANINGFUL MATH** MISCELLANEOUS UNICODE SYMBOLS SETUPS

::

\mathit	ABCDEFGHIJKLMNOPQRSTUVWXYZ
\mathrm	ABCDEFGHIJKLMNOPQRSTUVWXYZ
\mathss	ABCDEFGHIJKLMNOPQRSTUVWXYZ
\mathtt	ABCDEFGHIJKLMNOPQRSTUVWXYZ
\mathcal	ABCDEFGHIJKCMNOPQRSTUVWXYZ
\mathscr	ABCDEFGHIJKLMNOPQRSTUVWXYZ
\mathfrak	ABCDEFGHIJRLMNOPQRGTUVWXYZ
\mathbb	ABCDEFGHIJKLMNOPQRSTUVWXYZ
lowercase greek	αβγδεζηθικλμνξοπρςστυφχψω
uppercase greek	ΑΒΓΔΕΖΗΘΙΚΛΜΝΞΟΠΡΘΣΤΥΦΧΨΩ

9.9 ebgaramond

A paragraph from [Wil95]:

Assume for the moment that $F_{\mathfrak{P}}$ is \mathbf{Q}_p . In this case $\hat{E}_{\mathfrak{P}}$ is isomorphic to the Lubin–Tate group associated to $\pi x + x^p$ where $\pi = \varphi(\mathfrak{p})$. Then letting ω_n be nontrivial roots of $[\pi^n](x) = 0$ chosen so that $[\pi](\omega_n) = \omega_{n-1}$, it was shown in [CW] that to each element $u = \varprojlim u_n \in U_{\infty,\mathfrak{P}}$ there corresponded a unique power series $f_u(T) \in \mathbf{Z}_p[[T]]^*$ such that $f_u(\omega_n) = u_n$ for $n \ge 1$. The definition of $\delta_{k,\mathfrak{P}}$ $(k \ge 1)$ in this case was then

$$\delta_{k,\mathfrak{P}}(u) = \left(\frac{1}{\lambda'(T)}\frac{d}{dT}\right)^k \log f_u(T) \bigg|_{T=0}$$

It is easy to see that $\delta_{k,\mathfrak{P}}$ gives a homomorphism: $U_{\infty} \to U_{\infty,\mathfrak{P}} \to \mathcal{O}_{\mathfrak{p}}$ satisfying $\delta_{k,\mathfrak{P}}(\varepsilon^{\sigma}) = \theta(\sigma)^{k} \delta_{k,\mathfrak{P}}(\varepsilon)$ where θ : Gal $(\bar{F}/F) \to \mathcal{O}_{\mathfrak{p}}^{\times}$ is the character giving the action on $E[\mathfrak{p}^{\infty}]$.

A few formulas:

$$\begin{split} \int_{0}^{\pi/2} \ln(\sin x) \, dx &= -\frac{\pi}{2} \ln 2, \quad \frac{1}{\prod_{p=2}^{p_m} (1 - 1/p^2)} = \prod_{p=2}^{p_m} \sum_{k=0}^{+\infty} \frac{1}{p^{2k}}, \\ \sqrt{2 + \sqrt{2 + \sqrt{2 + \dots}}} &= 2, \quad \frac{1 - x^2}{(1 + x)^2} = \frac{1 - x}{1 + x}, \\ \binom{n}{4} &= \frac{n(n-1)(n-2)(n-3)}{1 \cdot 2 \cdot 3 \cdot 4}, \quad t_{n+1} \coloneqq \sup\left\{t < t_n \colon |\xi(t) - \xi(t_n)| = 2^{-j}\right\}. \end{split}$$

A few alphabets:

INTRODUCTION

GETTING STARTED

BUILDING BLOCKS

KEYWORDS

INLINE MATH

DISPLAYED MATH

EQUATION LABELS

ENUNCIATIONS

ILLUSTRATIONS

MATH FONTS

MEANINGFUL MATH

MISCELLANEOUS

UNICODE SYMBOLS

SETUPS

\mathit	ABCDEFGHIJKLMNOPQRSTUVWXYZ	INTRODUCTION
\mathrm \mathss	ABCDEFGHIJKLMNOPQRSTUVWXYZ ABCDEFGHIJKLMNOPQRSTUVWXYZ	GETTING STARTED
\mathtt ∖mathcal	ABCDEFGHIJKLMNOPQRSTUVWXYZ ABCDEFGHIJKLMNOPQRSTUVWXYE	BUILDING BLOCKS
\mathscr ∖mathfrak	ABCDEFGHIJKLMNOPQRSTUVWXYL UBCDEFGHIJRLMNDPQRSTUVWXYJ	KEYWORDS
\mathbb lowercase greek	ABCDEFGHIJKLMNOPQRSTUVWXYZ αβγδεζηθικλμνξοπ ρςστυφχψω	INLINE MATH
uppercase greek	<u>ΑΒΓΔΕΖΗΘΙΚΑΜΝΞΟΠΡΘΣΤΥΦΧΨΩ</u>	DISPLAYED MATH

EQUATION LABELS

ENUNCIATIONS

ILLUSTRATIONS

MATH FONTS

MEANINGFUL MATH

MISCELLANEOUS

UNICODE SYMBOLS

SETUPS

9.10 erewhon

A paragraph from [Wil95]:

Assume for the moment that $F_{\mathfrak{P}}$ is \mathbf{Q}_p . In this case $\hat{E}_{\mathfrak{P}}$ is isomorphic to the Lubin–Tate group associated to $\pi x + x^p$ where $\pi = \varphi(\mathfrak{p})$. Then letting ω_n be nontrivial roots of $[\pi^n](x) = 0$ chosen so that $[\pi](\omega_n) = \omega_{n-1}$, it was shown in [CW] that to each element $u = \underline{\lim} u_n \in U_{\infty,\mathfrak{P}}$ there corresponded a unique power series $f_u(T) \in \mathbf{Z}_p [\![T]\!]^{\times}$ such that $f_u(\omega_n) = u_n$ for $n \ge 1$. The definition of $\delta_{k,\mathfrak{P}}$ $(k \ge 1)$ in this case was then

$$\delta_{k,\mathfrak{P}}(u) = \left(\frac{1}{\lambda'(T)}\frac{d}{dT}\right)^k \log f_u(T)\Big|_{T=0}$$

It is easy to see that $\delta_{k,\mathfrak{P}}$ gives a homomorphism: $U_{\infty} \to U_{\infty,\mathfrak{P}} \to \mathcal{O}_{\mathfrak{p}}$ satisfying $\delta_{k,\mathfrak{P}}(\varepsilon^{\sigma}) = \theta(\sigma)^k \delta_{k,\mathfrak{P}}(\varepsilon)$ where θ : Gal $(\overline{F}/F) \to \mathcal{O}_{\mathfrak{p}}^{\times}$ is the character giving the action on $E[\mathfrak{p}^{\infty}]$.

A few formulas:

$$\begin{split} \int_0^{\pi/2} \ln(\sin x) \, dx &= -\frac{\pi}{2} \ln 2, \quad \frac{1}{\prod_{p=2}^{p_m} (1 - 1/p^2)} = \prod_{p=2}^{p_m} \sum_{k=0}^{+\infty} \frac{1}{p^{2k}}, \\ \sqrt{2 + \sqrt{2 + \sqrt{2 + \dots}}} &= 2, \quad \frac{1 - x^2}{(1 + x)^2} = \frac{1 - x}{1 + x}, \\ \binom{n}{4} &= \frac{n(n-1)(n-2)(n-3)}{1 \cdot 2 \cdot 3 \cdot 4}, \quad t_{n+1} \coloneqq \sup\left\{t < t_n : |\xi(t) - \xi(t_n)| = 2^{-j}\right\}. \end{split}$$

INTRODUCTION **GETTING STARTED BUILDING BLOCKS KEYWORDS INLINE MATH DISPLAYED MATH EQUATION LABELS ENUNCIATIONS** ILLUSTRATIONS MATH FONTS **MEANINGFUL MATH** MISCELLANEOUS UNICODE SYMBOLS SETUPS **BIBLIOGRAPHY**

\mathit

\mathrm

\mathss

\mathcal

\mathscr

\mathfrak

\mathbb

ABCDEFGHIJKLMNOPQRSTUVWXYZ

ABEDEFEHSJRLMNDPDRSTUDWX93

ABCDEFGHIJKLMNOPQRSTUVWXYZ

ABCDEFGHIJKLMNOPQRSTUVWXYI

ABCDEFGHIJKLMNOPQRSTUVWXYI

ABCDEFGHIJKLMNOPQRSTUVWXYZ

ABCDEFGHIJKLMNOPQRSTUVWXYZ

ABCDEFGHIJKLMNOPQRSTUVWXYZ

lowercase greek $\alpha\beta\gamma\delta\epsilon\zeta\eta\theta\iota\kappa\lambda\mu\nu\xi\sigma\rho\varsigma\sigma\tau\nu\varphi\chi\psi\omega$

uppercase greek $AB\Gamma \Delta EZH\Theta IK\Lambda MN \Xi O\Pi P\Theta \Sigma T \Upsilon \Phi X \Psi \Omega$

INTRODUCTION **GETTING STARTED BUILDING BLOCKS KEYWORDS INLINE MATH DISPLAYED MATH EQUATION LABELS ENUNCIATIONS** ILLUSTRATIONS MATH FONTS **MEANINGFUL MATH MISCELLANEOUS** UNICODE SYMBOLS SETUPS

9.11 iwona

A paragraph from [Wil95]:

Assume for the moment that $F_{\mathfrak{P}}$ is \mathbb{Q}_p . In this case $\hat{E}_{\mathfrak{P}}$ is isomorphic to the Lubin–Tate group associated to $\pi x + x^p$ where $\pi = \varphi(\mathfrak{p})$. Then letting ω_n be nontrivial roots of $[\pi^n](x) = 0$ chosen so that $[\pi](\omega_n) = \omega_{n-1}$, it was shown in [CW] that to each element $u = \lim_{n \to \infty} u_n \in U_{\infty,\mathfrak{P}}$ there corresponded a unique power series $f_u(T) \in \mathbb{Z}_p[\![T]\!]^{\times}$ such that $f_u(\omega_n) = u_n$ for $n \ge 1$. The definition of $\delta_{k,\mathfrak{P}}$ $(k \ge 1)$ in this case was then

$$\delta_{k,\mathfrak{P}}(u) = \left(\frac{1}{\lambda'(T)}\frac{d}{dT}\right)^k \log f_u(T)\Big|_{T=0}$$

It is easy to see that $\delta_{k,\mathfrak{P}}$ gives a homomorphism: $U_{\infty} \to U_{\infty,\mathfrak{P}} \to \mathcal{O}_{\mathfrak{p}}$ satisfying $\delta_{k,\mathfrak{P}}(\varepsilon^{\sigma}) = \theta(\sigma)^k \delta_{k,\mathfrak{P}}(\varepsilon)$ where θ : $\operatorname{Gal}(\overline{F}/F) \to \mathcal{O}_{\mathfrak{p}}^{\times}$ is the character giving the action on $E[\mathfrak{p}^{\infty}]$.

A few formulas:

$$\int_{0}^{\pi/2} \ln(\sin x) \, dx = -\frac{\pi}{2} \ln 2, \quad \frac{1}{\prod_{p=2}^{p_m} (1-1/p^2)} = \prod_{p=2}^{p_m} \sum_{k=0}^{+\infty} \frac{1}{p^{2k}},$$

$$MEANINGFUL MATH$$

$$MISCELLANEOUS$$

$$V = \sqrt{2 + \sqrt{2 + \sqrt{2 + \dots}}} = 2, \quad \frac{1-x^2}{(1+x)^2} = \frac{1-x}{1+x},$$

$$MISCELLANEOUS$$

$$UNICODE SYMBOLS$$

$$SETUPS$$

$$BIBLIOGRAPHY$$

INTRODUCTION

GETTING STARTED

BUILDING BLOCKS

KEYWORDS

INLINE MATH

DISPLAYED MATH

EQUATION LABELS

ENUNCIATIONS

ILLUSTRATIONS

\mathit

\mathrm

\mathss

\mathtt

\mathcal

\mathscr

\mathbb

\mathfrak

INTRODUCTION **GETTING STARTED** ABCDEFGHIJKLMNOPQRSTUVWXYZ ABCDEFGHIJKLMNOPQRSTUVWXYZ **BUILDING BLOCKS** ABCDEFGHIJKLMNOPQRSTUVWXYZ ABCDEFGHIJKLMNOPQRSTUVWXYZ **KEYWORDS** ABCDEFGHIJKLMNOPQRSTUVWXYZ ABCDEFGHIJK LMNOPQRST U V WXYZ **INLINE MATH** ABEDEFERSJALMINDPORGTUVWX93 **DISPLAYED MATH** ABCDEFGHIJKLMNOPQRSTUVWXYZ lowercase greek $\alpha\beta\gamma\delta\epsilon\zeta\eta\theta\iota\kappa\lambda\mu\nu\xi\sigma\pi\rho\varsigma\sigma\tau\upsilon\varphi\chi\psi\omega$ **EQUATION LABELS** uppercase greek $AB\Gamma\Delta EZH\Theta IK\Lambda MN \equiv O\Pi P\Theta \Sigma T \Upsilon \Phi X \Psi \Omega$ **ENUNCIATIONS** ILLUSTRATIONS MATH FONTS **MEANINGFUL MATH MISCELLANEOUS UNICODE SYMBOLS**

SETUPS

9.12 iwona-light

A paragraph from [Wil95]:

Assume for the moment that $F_{\mathfrak{P}}$ is \mathbf{Q}_p . In this case $\hat{E}_{\mathfrak{P}}$ is isomorphic to the Lubin–Tate group associated to $\pi x + x^p$ where $\pi = \varphi(\mathfrak{p})$. Then letting ω_n be nontrivial roots of $[\pi^n](x) = 0$ chosen so that $[\pi](\omega_n) = \omega_{n-1}$, it was shown in [CW] that to each element $u = \lim_{n \to \infty} u_n \in U_{\infty,\mathfrak{P}}$ there corresponded a unique power series $f_u(T) \in \mathbb{Z}_p[\![T]\!]^{\times}$ such that $f_u(\omega_n) = u_n$ for $n \ge 1$. The definition of $\delta_{k,\mathfrak{P}}$ $(k \ge 1)$ in this case was then

$$\delta_{k,\mathfrak{P}}(u) = \left(\frac{1}{\lambda'(T)}\frac{d}{dT}\right)^k \log f_u(T) \bigg|_{T=0}$$

It is easy to see that $\delta_{k,\mathfrak{P}}$ gives a homomorphism: $U_{\infty} \to U_{\infty,\mathfrak{P}} \to \mathcal{O}_{\mathfrak{p}}$ satisfying $\delta_{k,\mathfrak{P}}(\varepsilon^{\sigma}) = \theta(\sigma)^{k} \delta_{k,\mathfrak{P}}(\varepsilon)$ where θ : $\operatorname{Gal}(\overline{F}/F) \to \mathcal{O}_{\mathfrak{p}}^{\times}$ is the character giving the action on $E[\mathfrak{p}^{\infty}]$.

A few formulas:

$$\int_{0}^{\pi/2} \ln(\sin x) \, dx = -\frac{\pi}{2} \ln 2, \quad \frac{1}{\prod_{p=2}^{p_m} (1-1/p^2)} = \prod_{p=2}^{p_m} \sum_{k=0}^{+\infty} \frac{1}{p^{2k}}, \qquad \text{MEANINGFUL MATH}$$

$$\sqrt{2 + \sqrt{2 + \sqrt{2 + \dots}}} = 2, \quad \frac{1-x^2}{(1+x)^2} = \frac{1-x}{1+x}, \qquad \text{UNICODE SYMBOLS}$$

$$\frac{n}{4} = \frac{n(n-1)(n-2)(n-3)}{1\cdot 2\cdot 3\cdot 4}, \quad t_{n+1} := \sup\left\{t < t_n : |\xi(t) - \xi(t_n)| = 2^{-j}\right\}.$$
BIBLIOGRAPHY

INTRODUCTION

GETTING STARTED

BUILDING BLOCKS

KEYWORDS

INLINE MATH

DISPLAYED MATH

EQUATION LABELS

ENUNCIATIONS

ILLUSTRATIONS

SETUPS

9.13 koeieletters

A FARAGRAFA FROM [DILOS]:

Mostile for the moment that T_{Q} is Ω_{Q} . In this case X_{Q} is isomorphic to the Gauss-Tate choir associated to $2\pi \circ \pi^{Q}$ means $2 \circ 2(\pi)$. Then existing 2π is a contribution cover of $[2^{G}](\pi) \circ 0$ choosed so that $[2](2_{G}) \circ 2_{G-R}$. It the short is [GG] that to each element $\pi \circ 2_{Q}$ and $2 \Im_{m,Q}$ there corresponds a monome conce denies $\pi_{m}(T) 2 \Im_{q} T^{2}$ ones that $\pi_{m}(2_{G}) \circ \pi_{m}$ for a 2 R. The denies concerned to the following the second of $2_{m,Q}$ is a 2 R. The denies concerned to the following the second of $2_{m,Q}$ is a 10 m solution of $2_{m,Q}$ is a 2 R. The denies concerned to 2π of 2π is a 2 R. The denies concerned of $2_{m,Q}$ is a 2 R. The denies concerned of 2^{m} in the dense concerned of 2^{m} is a 2 R. The dense concerned of 2^{m} is a 2 R. The dense concerned of 2^{m} is a 2 R. The dense concerned of 2^{m} is a 2 R. The dense concerned of 2^{m} in the dense concerned of 2^{m} is a 2 R. Th

$$2_{\mathrm{T},\mathrm{T}}(\mathrm{T}) = \left[\frac{\mathrm{T}}{2'(\mathrm{T})} \frac{2}{2\mathrm{T}}\right]^{\mathrm{T}} \cos \varepsilon_{\mathrm{T}}(\mathrm{T}) \Big|_{\mathrm{T}=0}^{\mathrm{T}}.$$

It is easy to see that $2_{G,\widetilde{X}}$ sides a honomorphism: $\mathfrak{V}_{s_0} \to \mathfrak{V}_{s_0,\widetilde{X}} \to \mathfrak{O}_{\widetilde{X}}$ satisfying $2_{G,\widetilde{X}}(2^2) = 2(2)^G 2_{G,\widetilde{X}}(2)$ where 22 satisfying $\mathfrak{O}_{\widetilde{X}}$ is the character statisfying the action on $\mathfrak{E}[2^{s_0}]$.

A feu fonuitas:

$$\int_{0}^{2/3} 6\pi (66\pi \pi \pi) 2\pi = -\frac{2}{3} 6\pi 3, \quad \frac{\pi}{2\pi} \frac{\pi}{(\pi - \pi/2^3)} = \frac{2\pi}{2 + 3} \frac{\pi}{2} \frac{$$

INTRODUCTION

GETTING STARTED

BUILDING BLOCKS

KEYWORDS

INLINE MATH

DISPLAYED MATH

EOUATION LABELS

ENUNCIATIONS

ILLUSTRATIONS

MATH FONTS

MEANINGFUL MATH

MISCELLANEOUS

UNICODE SYMBOLS

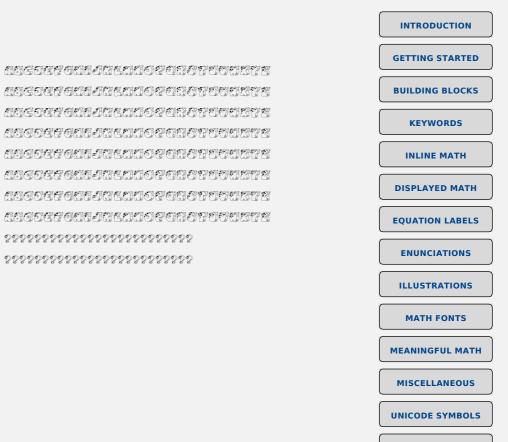
SETUPS

A FRE ALFOADETS:

\mathit

\mathrm

\mathss


\mathtt

\mathcal

\mathscr

\mathfrak

\mathbb

SETUPS

9.14 kpfonts

A paragraph from [Wil95]:

Assume for the moment that $F_{\mathfrak{p}}$ is \mathbf{Q}_p . In this case $\hat{E}_{\mathfrak{p}}$ is isomorphic to the Lubin–Tate group associated to $\pi x + x^p$ where $\pi = \varphi(\mathfrak{p})$. Then letting ω_n be nontrivial roots of $[\pi^n](x) = 0$ chosen so that $[\pi](\omega_n) = \omega_{n-1}$, it was shown in [CW] that to each element $u = \varprojlim u_n \in U_{\infty,\mathfrak{p}}$ there corresponded a unique power series $f_u(T) \in \mathbf{Z}_p[[T]]^\times$ such that $f_u(\omega_n) = u_n$ for $n \ge 1$. The definition of $\delta_{k,\mathfrak{p}}$ ($k \ge 1$) in this case was then

$$\delta_{k, \mathfrak{p}}(u) = \left(\frac{1}{\lambda'(T)}\frac{d}{dT}\right)^k \log f_u(T) \bigg|_{T=0}$$

It is easy to see that $\delta_{k,\mathfrak{p}}$ gives a homomorphism: $U_{\infty} \to U_{\infty,\mathfrak{p}} \to \mathcal{O}_{\rho}$ satisfying $\delta_{k,\mathfrak{p}}(\varepsilon^{\sigma}) = \theta(\sigma)^k \delta_{k,\mathfrak{p}}(\varepsilon)$ where θ : $\operatorname{Gal}(\overline{F}/F) \to \mathcal{O}_{\rho}^{\times}$ is the character giving the action on $E[\rho^{\infty}]$.

A few formulas:

$$\int_{0}^{\pi/2} \ln(\sin x) dx = -\frac{\pi}{2} \ln 2, \quad \frac{1}{\prod_{p=2}^{p_m} (1 - 1/p^2)} = \prod_{p=2}^{p_m} \sum_{k=0}^{+\infty} \frac{1}{p^{2k}},$$

$$MEANINGFUL MATH$$
MISCELLANEOUS
$$\sqrt{2 + \sqrt{2 + \sqrt{2 + \dots}}} = 2, \quad \frac{1 - x^2}{(1 + x)^2} = \frac{1 - x}{1 + x},$$

$$\left(\prod_{q=1}^{n} \frac{n(n-1)(n-2)(n-3)}{1 \cdot 2 \cdot 3 \cdot 4}, \quad t_{n+1} := \sup\left\{ t < t_n : |\xi(t) - \xi(t_n)| = 2^{-j} \right\}.$$
MEANINGFUL MATH
MISCELLANEOUS
$$UNICODE \text{ SYMBOLS}$$

$$BIBLIOGRAPHY$$

INTRODUCTION

GETTING STARTED

BUILDING BLOCKS

KEYWORDS

INLINE MATH

DISPLAYED MATH

EQUATION LABELS

ENUNCIATIONS

ILLUSTRATIONS

SETUPS

9.15 kurier

A paragraph from [Wil95]:

Assume for the moment that $F_{\mathfrak{P}}$ is Q_p . In this case $\hat{E}_{\mathfrak{P}}$ is isomorphic to the Lubin–Tate group associated to $\pi x + x^p$ where $\pi = \varphi(\mathfrak{p})$. Then letting ω_n be nontrivial roots of $[\pi^n](x) = 0$ chosen so that $[\pi](\omega_n) = \omega_{n-1}$, it was shown in [CW] that to each element $u = \lim_{n \to \infty} u_n \in U_{\infty,\mathfrak{P}}$ there corresponded a unique power series $f_u(T) \in \mathbb{Z}_p[[T]]^{\times}$ such that $f_u(\omega_n) = u_n$ for $n \ge 1$. The definition of $\delta_{k,\mathfrak{P}}$ ($k \ge 1$) in this case was then

$$\delta_{k,\mathfrak{P}}(u) = \left(\frac{1}{\lambda'(T)}\frac{d}{dT}\right)^k \log f_u(T) \bigg|_{T=0}.$$

It is easy to see that $\delta_{k,\mathfrak{P}}$ gives a homomorphism: $U_{\infty} \to U_{\infty,\mathfrak{P}} \to \mathcal{O}_{\mathfrak{p}}$ satisfying $\delta_{k,\mathfrak{P}}(\varepsilon^{\sigma}) = \theta(\sigma)^{k} \delta_{k,\mathfrak{P}}(\varepsilon)$ where $\theta: \operatorname{Gal}(\overline{F}/F) \to \mathcal{O}_{\mathfrak{p}}^{\times}$ is the character giving the action on $E[\mathfrak{p}^{\infty}]$.

A few formulas:

$$\int_{0}^{\pi/2} \ln(\sin x) \, dx = -\frac{\pi}{2} \ln 2, \quad \frac{1}{\prod_{p=2}^{p_m} (1-1/p^2)} = \prod_{p=2}^{p_m} \sum_{k=0}^{+\infty} \frac{1}{p^{2k}},$$

$$MEANINGFUL MATH
MISCELLANEOUS
UNICODE SYMBOLS
$$\sqrt{2 + \sqrt{2 + \sqrt{2 + \dots}}} = 2, \quad \frac{1-x^2}{(1+x)^2} = \frac{1-x}{1+x},$$

$$SETUPS$$

$$\frac{n(n-1)(n-2)(n-3)}{1\cdot 2\cdot 3\cdot 4}, \quad t_{n+1} := \sup\left\{t < t_n : |\xi(t) - \xi(t_n)| = 2^{-j}\right\}.$$
BIBLIOGRAPHY$$

INTRODUCTION

GETTING STARTED

BUILDING BLOCKS

KEYWORDS

INLINE MATH

DISPLAYED MATH

EQUATION LABELS

ENUNCIATIONS

ILLUSTRATIONS

\mathit

\mathrm

\mathss

\mathtt

\mathcal

\mathscr

\mathbb

\mathfrak

INTRODUCTION **GETTING STARTED** ABCDEFGHIJKLMNOPQRSTUVWXYZ ABCDEFGHIJKLMNOPQRSTUVWXYZ **BUILDING BLOCKS** ABCDEFGHIJKLMNOPQRSTUVWXYZ ABCDEFGHIJKLMNOPQRSTUVWXYZ **KEYWORDS** ABCDEFGHIJKLMNOPQRSTUVWXYZ ABCDEFGHIJK LMNOPQRST U V WXYZ **INLINE MATH** ABEDEFGHFJRLMNDPDRSTUDDX93 **DISPLAYED MATH** ABCDEFGHIJKLMNOPQRSTUVWXYZ lowercase greek $\alpha\beta\gamma\delta\epsilon\zeta\eta\theta\iota\kappa\lambda\mu\nu\xi\sigma\pi\rho\varsigma\sigma\tau\upsilon\varphi\chi\psi\omega$ **EQUATION LABELS** uppercase greek $AB\Gamma\Delta EZH\Theta IK\Lambda MN \equiv O\Pi P\Theta \Sigma T \Upsilon \Phi X \Psi \Omega$ **ENUNCIATIONS** ILLUSTRATIONS MATH FONTS **MEANINGFUL MATH** MISCELLANEOUS **UNICODE SYMBOLS**

SETUPS

9.16 kurier-light

A paragraph from [Wil95]:

Assume for the moment that $F_{\mathfrak{P}}$ is \mathbb{Q}_p . In this case $\hat{E}_{\mathfrak{P}}$ is isomorphic to the Lubin–Tate group associated to $\pi x + x^p$ where $\pi = \varphi(\mathfrak{p})$. Then letting ω_n be nontrivial roots of $[\pi^n](x) = 0$ chosen so that $[\pi](\omega_n) = \omega_{n-1}$, it was shown in [CW] that to each element $u = \lim_{n \to \infty} u_n \in U_{\infty,\mathfrak{P}}$ there corresponded a unique power series $f_u(T) \in \mathbb{Z}_p[\![T]\!]^{\times}$ such that $f_u(\omega_n) = u_n$ for $n \ge 1$. The definition of $\delta_{k,\mathfrak{P}}$ $(k \ge 1)$ in this case was then

$$\delta_{k,\mathfrak{P}}(u) = \left(\frac{1}{\lambda'(T)}\frac{d}{dT}\right)^k \log f_u(T) \bigg|_{T=0}$$

It is easy to see that $\delta_{k,\mathfrak{P}}$ gives a homomorphism: $U_{\infty} \to U_{\infty,\mathfrak{P}} \to \mathcal{O}_{\mathfrak{p}}$ satisfying $\delta_{k,\mathfrak{P}}(\varepsilon^{\sigma}) = \theta(\sigma)^{k} \delta_{k,\mathfrak{P}}(\varepsilon)$ where θ : $\operatorname{Gal}(\overline{F}/F) \to \mathcal{O}_{\mathfrak{p}}^{\times}$ is the character giving the action on $E[\mathfrak{p}^{\infty}]$.

A few formulas:

$$\int_{0}^{\pi/2} \ln(\sin x) \, dx = -\frac{\pi}{2} \ln 2, \quad \frac{1}{\prod_{p=2}^{p_m} (1-1/p^2)} = \prod_{p=2}^{p_m} \sum_{k=0}^{+\infty} \frac{1}{p^{2k'}}$$

$$MEANINGFUL MATH$$
MISCELLANEOUS
$$\sqrt{2 + \sqrt{2 + \sqrt{2 + \dots}}} = 2, \quad \frac{1-x^2}{(1+x)^2} = \frac{1-x}{1+x'},$$

$$SETUPS$$

$$\frac{n}{4} = \frac{n(n-1)(n-2)(n-3)}{1\cdot 2\cdot 3\cdot 4}, \quad t_{n+1} := \sup\left\{t < t_n : |\xi(t) - \xi(t_n)| = 2^{-j}\right\}.$$
BIBLIOGRAPHY

INTRODUCTION

GETTING STARTED

BUILDING BLOCKS

KEYWORDS

INLINE MATH

DISPLAYED MATH

EQUATION LABELS

ENUNCIATIONS

ILLUSTRATIONS

\mathit

\mathrm

\mathss

\mathtt

\mathcal

\mathscr

\mathbb

\mathfrak

SETUPS

9.17 libertinus

A paragraph from [Wil95]:

Assume for the moment that $F_{\mathfrak{P}}$ is \mathbb{Q}_p . In this case $\hat{E}_{\mathfrak{P}}$ is isomorphic to the Lubin–Tate group associated to $\pi x + x^p$ where $\pi = \varphi(\mathfrak{p})$. Then letting ω_n be nontrivial roots of $[\pi^n](x) = 0$ chosen so that $[\pi](\omega_n) = \omega_{n-1}$, it was shown in [CW] that to each element $u = \lim_{n \to \infty} u_n \in U_{\infty,\mathfrak{P}}$ there corresponded a unique power series $f_u(T) \in \mathbb{Z}_p[[T]]^{\times}$ such that $f_u(\omega_n) = u_n$ for $n \ge 1$. The definition of $\delta_{k,\mathfrak{P}}$ $(k \ge 1)$ in this case was then

$$\delta_{k,\mathfrak{P}}(u) = \left(\frac{1}{\lambda'(T)}\frac{d}{dT}\right)^k \log f_u(T) \bigg|_{T=0}$$

It is easy to see that $\delta_{k,\mathfrak{P}}$ gives a homomorphism: $U_{\infty} \to U_{\infty,\mathfrak{P}} \to \mathcal{O}_{\mathfrak{P}}$ satisfying $\delta_{k,\mathfrak{P}}(\varepsilon^{\sigma}) = \theta(\sigma)^{k} \delta_{k,\mathfrak{P}}(\varepsilon)$ where $\theta \colon \operatorname{Gal}(\bar{F}/F) \to \mathcal{O}_{\mathfrak{P}}^{\times}$ is the character giving the action on $E[\mathfrak{p}^{\infty}]$.

A few formulas:

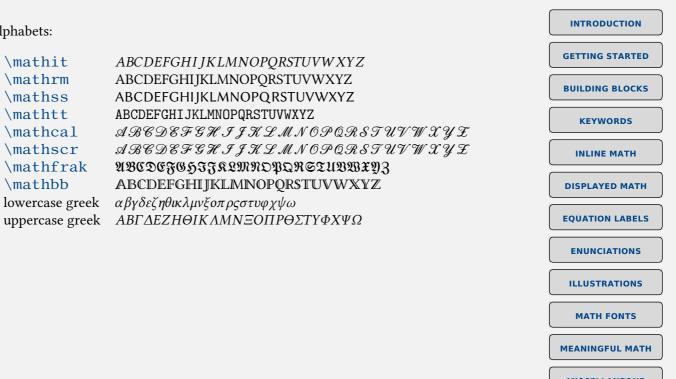
$$\begin{split} \int_{0}^{\pi/2} \ln(\sin x) \, dx &= -\frac{\pi}{2} \ln 2, \quad \frac{1}{\prod_{p=2}^{p_m} (1 - 1/p^2)} = \prod_{p=2}^{p_m} \sum_{k=0}^{+\infty} \frac{1}{p^{2k}}, \\ \sqrt{2 + \sqrt{2 + \sqrt{2 + \dots}}} &= 2, \quad \frac{1 - x^2}{(1 + x)^2} = \frac{1 - x}{1 + x}, \\ \binom{n}{4} &= \frac{n(n-1)(n-2)(n-3)}{1 \cdot 2 \cdot 3 \cdot 4}, \quad t_{n+1} \coloneqq \sup\{t < t_n : |\xi(t) - \xi(t_n)| = 2^{-j}\}. \end{split}$$

INTRODUCTION **GETTING STARTED BUILDING BLOCKS KEYWORDS INLINE MATH DISPLAYED MATH EQUATION LABELS ENUNCIATIONS** ILLUSTRATIONS MATH FONTS **MEANINGFUL MATH** MISCELLANEOUS UNICODE SYMBOLS SETUPS **BIBLIOGRAPHY**

\mathit

\mathrm

\mathss


\mathtt

\mathcal

\mathscr

\mathbb

\mathfrak

MISCELLANEOUS

UNICODE SYMBOLS

SETUPS

9.18 lucida

A paragraph from [Wil95]:

Assume for the moment that $F_{\mathfrak{P}}$ is \mathbf{Q}_p . In this case $\hat{E}_{\mathfrak{P}}$ is isomorphic to the Lubin-Tate group associated to $\pi x + x^p$ where $\pi = \varphi(\mathfrak{p})$. Then letting ω_n be nontrivial roots of $[\pi^n](x) = 0$ chosen so that $[\pi](\omega_n) = \omega_{n-1}$, it was shown in [CW] that to each element $u = \lim_{n \to \infty} u_n \in U_{\infty,\mathfrak{P}}$ there corresponded a unique power series $f_u(T) \in \mathbf{Z}_p[T]^{\times}$ such that $f_u(\omega_n) = u_n$ for $n \ge 1$. The definition of $\delta_{k,\mathfrak{P}}$ $(k \ge 1)$ in this case was then

$$\delta_{\boldsymbol{k},\boldsymbol{\mathcal{P}}}(\boldsymbol{u}) = \left(\frac{1}{\lambda'(T)}\frac{d}{dT}\right)^{\boldsymbol{k}}\log f_{\boldsymbol{u}}(T)\Big|_{\boldsymbol{T}=\boldsymbol{0}}$$

It is easy to see that $\delta_{k,\mathfrak{P}}$ gives a homomorphism: $U_{\infty} \to U_{\infty,\mathfrak{P}} \to \mathcal{O}_{\mathfrak{p}}$ satisfying $\delta_{k,\mathfrak{P}}(\varepsilon^{\sigma}) = \theta(\sigma)^{k} \delta_{k,\mathfrak{P}}(\varepsilon)$ where θ : $\operatorname{Gal}(\overline{F}/F) \to \mathcal{O}_{\mathfrak{p}}^{\times}$ is the character giving the action on $E[\mathfrak{p}^{\infty}]$.

A few formulas:

$$\int_{0}^{\pi/2} \ln(\sin x) \, dx = -\frac{\pi}{2} \ln 2, \quad \frac{1}{\prod_{p=2}^{p_m} (1 - 1/p^2)} = \prod_{p=2}^{p_m} \sum_{k=0}^{+\infty} \frac{1}{p^{2k}},$$
$$\sqrt{2 + \sqrt{2 + \sqrt{2 + \dots}}} = 2, \quad \frac{1 - x^2}{(1 + x)^2} = \frac{1 - x}{1 + x},$$

$$\binom{n}{4} = \frac{n(n-1)(n-2)(n-3)}{1 \cdot 2 \cdot 3 \cdot 4}, \quad t_{n+1} \coloneqq \sup \left\{ t < t_n : |\xi(t) - \xi(t_n)| = 2^{-j} \right\}.$$

\mathit	ABCDEFGHIJKLMNOPQRSTUVWXYZ	KEYWORDS
\mathrm	ABCDEFGHIJKLMNOPQRSTUVWXYZ	KETWORDS
\mathss	ABCDEFGHIJKLMNOPQRSTUVWXYZ	INLINE MATH
\mathtt	ABCDEFGHIJKLMNOPQRSTUVWXYZ	
\mathcal	ABCDEFGHIJKLMNOPQRSTUVWXYZ	DISPLAYED MATH
\mathscr	へパヒカモテ らドリ タメ よМПОР えれざす UVW メンユ	EQUATION LABELS
\mathfrak	ABCD&F6HIJKLMNOPQRSTUVWXY3	
\mathbb	ABCDEFGHIJKLMNOPQRSTUVWXYZ	ENUNCIATIONS
lowercase greek	αβγδεζηθικλμνξοπρςστυφχψω	ILLUSTRATIONS
uppercase greek	ΑΒΓΔΕΖΗΘΙΚΛΜΝΞΟΠΡ?ΣΤΥΦΧΨΩ	
		MATH FONTS

349

INTRODUCTION

GETTING STARTED

BUILDING BLOCKS

MEANINGFUL MATH

MISCELLANEOUS

UNICODE SYMBOLS

SETUPS

9.19 modern

A paragraph from [Wil95]:

Assume for the moment that $F_{\mathfrak{P}}$ is \mathbf{Q}_p . In this case $\hat{E}_{\mathfrak{P}}$ is isomorphic to the Lubin– Tate group associated to $\pi x + x^p$ where $\pi = \varphi(\mathfrak{p})$. Then letting ω_n be nontrivial roots of $[\pi^n](x) = 0$ chosen so that $[\pi](\omega_n) = \omega_{n-1}$, it was shown in [CW] that to each element $u = \underline{\lim} u_n \in U_{\infty,\mathfrak{P}}$ there corresponded a unique power series $f_u(T) \in \mathbf{Z}_p[\![T]\!]^{\times}$ such that $f_u(\omega_n) = u_n$ for $n \geq 1$. The definition of $\delta_{k,\mathfrak{P}}$ $(k \geq 1)$ in this case was then

$$\delta_{k,\mathfrak{P}}(u) = \left(\frac{1}{\lambda'(T)}\frac{d}{dT}\right)^k \log f_u(T) \bigg|_{T=0}$$

It is easy to see that $\delta_{k,\mathfrak{P}}$ gives a homomorphism: $U_{\infty} \to U_{\infty,\mathfrak{P}} \to \mathcal{O}_{\mathfrak{p}}$ satisfying $\delta_{k,\mathfrak{P}}(\varepsilon^{\sigma}) = \theta(\sigma)^{k} \delta_{k,\mathfrak{P}}(\varepsilon)$ where θ : $\operatorname{Gal}(\overline{F}/F) \to \mathcal{O}_{\mathfrak{p}}^{\times}$ is the character giving the action on $E[\mathfrak{p}^{\infty}]$.

A few formulas:

$$\int_{0}^{\pi/2} \ln(\sin x) \, dx = -\frac{\pi}{2} \ln 2, \quad \frac{1}{\prod_{p=2}^{p_m} (1 - 1/p^2)} = \prod_{p=2}^{p_m} \sum_{k=0}^{+\infty} \frac{1}{p^{2k}},$$

$$\sqrt{2 + \sqrt{2 + \sqrt{2 + \dots}}} = 2, \quad \frac{1 - x^2}{(1 + x)^2} = \frac{1 - x}{1 + x},$$

$$\binom{n}{4} = \frac{n(n-1)(n-2)(n-3)}{1 \cdot 2 \cdot 3 \cdot 4}, \quad t_{n+1} := \sup\left\{t < t_n : |\xi(t) - \xi(t_n)| = 2^{-j}\right\}.$$

BUILDING BLOCKS

KEYWORDS

INLINE MATH

DISPLAYED MATH

EQUATION LABELS

ENUNCIATIONS

ILLUSTRATIONS

MATH FONTS

MEANINGFUL MATH

MISCELLANEOUS

UNICODE SYMBOLS

SETUPS

\mathit \mathrm

\mathss \mathtt

\mathcal

\mathscr

\mathbb

\mathfrak

INTRODUCTION **GETTING STARTED** ABCDEFGHIJKLMNOPQRSTUVWXYZ ABCDEFGHIJKLMNOPQRSTUVWXYZ **BUILDING BLOCKS** ABCDEFGHIJKLMNOPQRSTUVWXYZ ABCDEFGHIJKLMNOPQRSTUVWXYZ **KEYWORDS** ABCDEFGHIJKLMNOPQRSTUVWXYZ ABCDEFGHIJKLMNOPQRSTUVWXYZ **INLINE MATH** ABEDEFEHIJALMNDPDRETUVWX93 ABCDEFGHIJKLMNOPQRSTUVWXYZ **DISPLAYED MATH** lowercase greek $\alpha\beta\gamma\delta\varepsilon\zeta\eta\theta\iota\kappa\lambda\mu\nu\xi\sigma\pi\rho\varsigma\sigma\tau\upsilon\varphi\chi\psi\omega$ uppercase greek $AB\Gamma\Delta EZH\Theta IKAMN\Xi O\Pi P\Theta \Sigma T\Upsilon \Phi X\Psi \Omega$ **EQUATION LABELS ENUNCIATIONS** ILLUSTRATIONS MATH FONTS **MEANINGFUL MATH** MISCELLANEOUS UNICODE SYMBOLS

SETUPS

9.20 pagella

A paragraph from [Wil95]:

Assume for the moment that $F_{\mathfrak{P}}$ is \mathbf{Q}_p . In this case $\hat{E}_{\mathfrak{P}}$ is isomorphic to the Lubin–Tate group associated to $\pi x + x^p$ where $\pi = \varphi(\mathfrak{p})$. Then letting ω_n be nontrivial roots of $[\pi^n](x) = 0$ chosen so that $[\pi](\omega_n) = \omega_{n-1}$, it was shown in [CW] that to each element $u = \varprojlim u_n \in U_{\infty,\mathfrak{P}}$ there corresponded a unique power series $f_u(T) \in \mathbf{Z}_p[T]^{\times}$ such that $f_u(\omega_n) = u_n$ for $n \ge 1$. The definition of $\delta_{k,\mathfrak{P}}$ ($k \ge 1$) in this case was then

$$\delta_{k,\mathfrak{P}}(u) = \left(\frac{1}{\lambda'(T)}\frac{d}{dT}\right)^k \log f_u(T) \bigg|_{T=0}.$$

It is easy to see that $\delta_{k,\mathfrak{P}}$ gives a homomorphism: $U_{\infty} \to U_{\infty,\mathfrak{P}} \to \mathcal{O}_{\mathfrak{p}}$ satisfying $\delta_{k,\mathfrak{P}}(\varepsilon^{\sigma}) = \theta(\sigma)^k \delta_{k,\mathfrak{P}}(\varepsilon)$ where θ : $\operatorname{Gal}(\overline{F}/F) \to \mathcal{O}_{\mathfrak{p}}^{\times}$ is the character giving the action on $E[\mathfrak{p}^{\infty}]$.

A few formulas:

INTRODUCTION

GETTING STARTED

BUILDING BLOCKS

KEYWORDS

INLINE MATH

DISPLAYED MATH

EQUATION LABELS

ENUNCIATIONS

ILLUSTRATIONS

\mathit

\mathrm

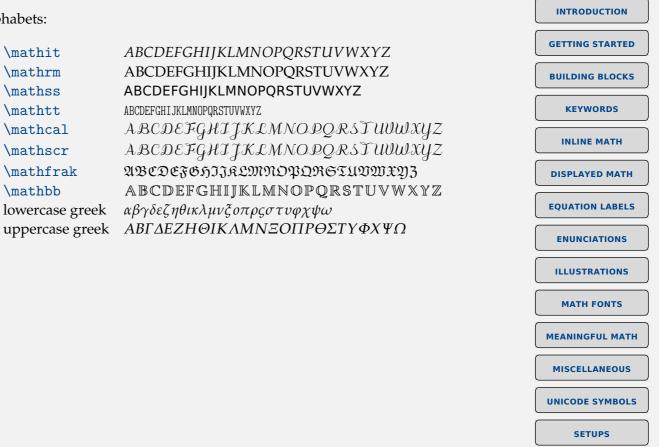
\mathss

\mathscr

\mathbb

\mathtt

\mathcal


\mathfrak

ABCDEFGHIJKLMNOPQRSTUVWXYZ ABCDEFGHIJKLMNOPQRSTUVWXYZ

ABCDEFGHIJKLMNOPQRSTUVWXYZ

ABCDEFGHIJKLMNOPQRSTUVWXYZ

lowercase greek $\alpha\beta\gamma\delta\epsilon\zeta\eta\theta\iota\kappa\lambda\mu\nu\xi\sigma\pi\rho\varsigma\sigma\tau\nu\phi\chi\psi\omega$

BIBLIOGRAPHY

353

9.21 schola

A paragraph from [Wil95]:

Assume for the moment that $F_{\mathfrak{P}}$ is \mathbf{Q}_p . In this case $\hat{E}_{\mathfrak{P}}$ is isomorphic to the Lubin– Tate group associated to $\pi x + x^p$ where $\pi = \varphi(\mathfrak{p})$. Then letting ω_n be nontrivial roots of $[\pi^n](x) = 0$ chosen so that $[\pi](\omega_n) = \omega_{n-1}$, it was shown in [CW] that to each element $u = \varprojlim u_n \in U_{\infty,\mathfrak{P}}$ there corresponded a unique power series $f_u(T) \in \mathbf{Z}_p[T]^{\times}$ such that $f_u(\omega_n) = u_n$ for $n \ge 1$. The definition of $\delta_{k,\mathfrak{P}}$ ($k \ge 1$) in this case was then

$$\delta_{k,\mathfrak{P}}(u) = \left(\frac{1}{\lambda'(T)}\frac{d}{dT}\right)^k \log f_u(T) \bigg|_{T=0}$$

It is easy to see that $\delta_{k,\mathfrak{P}}$ gives a homomorphism: $U_{\infty} \to U_{\infty,\mathfrak{P}} \to \mathcal{O}_{\mathfrak{p}}$ satisfying $\delta_{k,\mathfrak{P}}(\varepsilon^{\sigma}) = \theta(\sigma)^k \delta_{k,\mathfrak{P}}(\varepsilon)$ where θ : $\operatorname{Gal}(\overline{F}/F) \to \mathcal{O}_{\mathfrak{p}}^{\times}$ is the character giving the action on $E[\mathfrak{p}^{\infty}]$.

A few formulas:

$$\begin{split} \int_{0}^{\pi/2} \ln\left(\sin x\right) dx &= -\frac{\pi}{2} \ln 2, \quad \frac{1}{\prod_{p=2}^{p_m} (1-1/p^2)} = \prod_{p=2}^{p_m} \sum_{k=0}^{+\infty} \frac{1}{p^{2k}}, \quad (1-1/p^2) \\ \sqrt{2 + \sqrt{2 + \sqrt{2 + \dots}}} &= 2, \quad \frac{1-x^2}{(1+x)^2} = \frac{1-x}{1+x}, \\ \begin{pmatrix} n \\ 4 \end{pmatrix} &= \frac{n(n-1)(n-2)(n-3)}{1 \cdot 2 \cdot 3 \cdot 4}, \quad t_{n+1} \coloneqq \sup\left\{t < t_n : \left|\xi(t) - \xi(t_n)\right| = 2^{-j}\right\}. \end{split}$$

INTRODUCTION

GETTING STARTED

BUILDING BLOCKS

KEYWORDS

INLINE MATH

DISPLAYED MATH

EQUATION LABELS

ENUNCIATIONS

ILLUSTRATIONS

MATH FONTS

MEANINGFUL MATH

MISCELLANEOUS

UNICODE SYMBOLS

SETUPS

\mathit

\mathss

\mathtt

\mathcal

\mathfrak

\mathscr

\mathbb

\mathrm

ABCDEFGHIJKLMNOPQRSTUVWXYZ

ABCDEFGHIJKLMNOPQRSTUVWXYZ

lowercase greek $\alpha\beta\gamma\delta\epsilon\zeta\eta\theta\iota\kappa\lambda\mu\nu\xi\sigma\pi\rho\varsigma\sigma\tau\nu\varphi\chi\psi\omega$

INTRODUCTION **GETTING STARTED** ABCDEFGHIJKLMNOPQRSTUVWXYZ ABCDEFGHIJKLMNOPQRSTUVWXYZ **BUILDING BLOCKS KEYWORDS** ABCDEFGHIJKLMNOPQRSTUVWXYZ **INLINE MATH** ABCDEFGHIJKLMNOPQRITUVWXYL ABCDEFGHIJALMNDPQKSTUVWX93 **DISPLAYED MATH** ABCDEFGHIJKLMNOPQRSTUVWXYZ **EQUATION LABELS** uppercase greek $AB\Gamma\Delta EZH\Theta IK\Lambda MN\Xi O\Pi P\Theta \Sigma T \Upsilon \Phi X \Psi \Omega$ **ENUNCIATIONS ILLUSTRATIONS** MATH FONTS **MEANINGFUL MATH** MISCELLANEOUS UNICODE SYMBOLS SETUPS

9.22 stixtwo

A paragraph from [Wil95]:

Assume for the moment that $F_{\mathfrak{P}}$ is \mathbf{Q}_p . In this case $\hat{E}_{\mathfrak{P}}$ is isomorphic to the Lubin–Tate group associated to $\pi x + x^p$ where $\pi = \varphi(\mathfrak{p})$. Then letting ω_n be nontrivial roots of $[\pi^n](x) = 0$ chosen so that $[\pi](\omega_n) = \omega_{n-1}$, it was shown in [CW] that to each element $u = \lim_{n \to \infty} u_n \in U_{\infty,\mathfrak{P}}$ there corresponded a unique power series $f_u(T) \in \mathbf{Z}_p[[T]]^{\times}$ such that $f_u(\omega_n) = u_n$ for $n \ge 1$. The definition of $\delta_{k,\mathfrak{P}}$ ($k \ge 1$) in this case was then

$$\delta_{k,\mathfrak{P}}(u) = \left(\frac{1}{\lambda'(T)}\frac{d}{dT}\right)^k \log f_u(T) \bigg|_{T=0}$$

It is easy to see that $\delta_{k,\mathfrak{P}}$ gives a homomorphism: $U_{\infty} \to U_{\infty,\mathfrak{P}} \to \mathcal{O}_{\mathfrak{P}}$ satisfying $\delta_{k,\mathfrak{P}}(\varepsilon^{\sigma}) = \theta(\sigma)^k \delta_{k,\mathfrak{P}}(\varepsilon)$ where θ : $\operatorname{Gal}(\overline{F}/F) \to \mathcal{O}_{\mathfrak{P}}^{\times}$ is the character giving the action on $E[\mathfrak{p}^{\infty}]$.

A few formulas:

$$\int_{0}^{\pi/2} \ln(\sin x) dx = -\frac{\pi}{2} \ln 2, \quad \frac{1}{\prod_{p=2}^{p_m} (1 - 1/p^2)} = \prod_{p=2}^{p_m} \sum_{k=0}^{+\infty} \frac{1}{p^{2k}},$$

$$MEANINGFUL MATH$$

$$MISCELLANEOUS$$

$$UNICODE SYMBOLS$$

$$UNICODE SYMBOLS$$

$$UNICODE SYMBOLS$$

$$SETUPS$$

$$MEANINGFUL MATH$$

INTRODUCTION

GETTING STARTED

BUILDING BLOCKS

KEYWORDS

INLINE MATH

DISPLAYED MATH

EQUATION LABELS

ENUNCIATIONS

ILLUSTRATIONS

\mathit

\mathrm

\mathss

\mathtt

\mathcal

\mathscr \mathfrak

\mathbb

9.23 termes

A paragraph from [Wil95]:

Assume for the moment that $F_{\mathfrak{P}}$ is \mathbf{Q}_p . In this case $\hat{E}_{\mathfrak{P}}$ is isomorphic to the Lubin–Tate group associated to $\pi x + x^p$ where $\pi = \varphi(\mathfrak{p})$. Then letting ω_n be nontrivial roots of $[\pi^n](x) = 0$ chosen so that $[\pi](\omega_n) = \omega_{n-1}$, it was shown in [CW] that to each element $u = \lim_{n \to \infty} u_n \in U_{\infty,\mathfrak{P}}$ there corresponded a unique power series $f_u(T) \in \mathbf{Z}_p [\![T]\!]^{\times}$ such that $f_u(\omega_n) = u_n$ for $n \ge 1$. The definition of $\delta_{k,\mathfrak{P}}$ ($k \ge 1$) in this case was then

$$\delta_{k,\mathfrak{P}}(u) = \left(\frac{1}{\lambda'(T)}\frac{d}{dT}\right)^k \log f_u(T) \bigg|_{T=0}$$

It is easy to see that $\delta_{k,\mathfrak{P}}$ gives a homomorphism: $U_{\infty} \to U_{\infty,\mathfrak{P}} \to \mathcal{O}_{\mathfrak{P}}$ satisfying $\delta_{k,\mathfrak{P}}(\varepsilon^{\sigma}) = \theta(\sigma)^k \delta_{k,\mathfrak{P}}(\varepsilon)$ where θ : Gal $(\overline{F}/F) \to \mathcal{O}_{\mathfrak{P}}^{\times}$ is the character giving the action on $E[\mathfrak{P}^{\infty}]$.

A few formulas:

$$\begin{split} \int_{0}^{\pi/2} \ln(\sin x) \, dx &= -\frac{\pi}{2} \ln 2, \quad \frac{1}{\prod_{p=2}^{p_m} (1 - 1/p^2)} = \prod_{p=2}^{p_m} \sum_{k=0}^{+\infty} \frac{1}{p^{2k}}, \\ \sqrt{2 + \sqrt{2 + \sqrt{2 + \dots}}} &= 2, \quad \frac{1 - x^2}{(1 + x)^2} = \frac{1 - x}{1 + x}, \\ \binom{n}{4} &= \frac{n(n-1) \left(n-2\right) \left(n-3\right)}{1 \cdot 2 \cdot 3 \cdot 4}, \quad t_{n+1} \coloneqq \sup\{t < t_n \colon |\xi(t) - \xi(t_n)| = 2^{-j}\}. \end{split}$$

\mathit

\mathrm

\mathss

\mathtt

\mathcal

\mathscr

\mathbb

\mathfrak

ABCDEFGHIJKLMNOPQRSTUVWXYZ

ABCDEFGHIJKLMNOPQRSTUVWXYZ

ABCDEFESIJREMNDPDREEUSBEN3

ABCDEFGHIJKLMNOPQRSTUVWXYZ

ABCDEFGHIJKLMNOPQRSTUVWXYZ

ABCDEFGHIJKLMNOPQRSTUVWXYZ

lowercase greek $\alpha\beta\gamma\delta\varepsilon\zeta\eta\theta\iota\kappa\lambda\mu\nu\xi\sigma\pi\rho\varsigma\sigma\tau\upsilon\varphi\chi\psi\omega$

uppercase greek $AB\Gamma \Delta EZH\Theta IK \Lambda MN \Xi O\Pi P\Theta \Sigma T \Upsilon \Phi X \Psi \Omega$

INTRODUCTION **GETTING STARTED BUILDING BLOCKS KEYWORDS** ABCDEFGHIJKLMNOPQRLTUVWXYL ABCDEFGHIJKLMNOPQRFTUVWXYL **INLINE MATH DISPLAYED MATH EQUATION LABELS ENUNCIATIONS** ILLUSTRATIONS MATH FONTS **MEANINGFUL MATH** MISCELLANEOUS **UNICODE SYMBOLS** SETUPS

9.24 xcharter

A paragraph from [Wil95]:

Assume for the moment that $F_{\mathfrak{P}}$ is \mathbf{Q}_p . In this case $\hat{E}_{\mathfrak{P}}$ is isomorphic to the Lubin–Tate group associated to $\pi x + x^p$ where $\pi = \varphi(\mathfrak{p})$. Then letting ω_n be nontrivial roots of $[\pi^n](x) = 0$ chosen so that $[\pi](\omega_n) = \omega_{n-1}$, it was shown in [CW] that to each element $u = \varprojlim u_n \in U_{\infty,\mathfrak{P}}$ there corresponded a unique power series $f_u(T) \in \mathbf{Z}_p[[T]]^{\times}$ such that $f_u(\omega_n) = u_n$ for $n \ge 1$. The definition of $\delta_{k,\mathfrak{P}}$ $(k \ge 1)$ in this case was then

$$\delta_{k,\mathfrak{P}}(u) = \left(\frac{1}{\lambda'(T)}\frac{d}{dT}\right)^k \log f_u(T) \bigg|_{T=0}$$

It is easy to see that $\delta_{k,\mathfrak{P}}$ gives a homomorphism: $U_{\infty} \to U_{\infty,\mathfrak{P}} \to \mathcal{O}_{\mathfrak{p}}$ satisfying $\delta_{k,\mathfrak{P}}(\varepsilon^{\sigma}) = \theta(\sigma)^k \delta_{k,\mathfrak{P}}(\varepsilon)$ where $\theta: \operatorname{Gal}(\overline{F}/F) \to \mathcal{O}_{\mathfrak{p}}^{\times}$ is the character giving the action on $E[\mathfrak{p}^{\infty}]$.

A few formulas:

$$\int_{0}^{\pi/2} \ln(\sin x) \, dx = -\frac{\pi}{2} \ln 2, \quad \frac{1}{\prod_{p=2}^{p_m} (1-1/p^2)} = \prod_{p=2}^{p_m} \sum_{k=0}^{+\infty} \frac{1}{p^{2k}},$$

$$\int_{0}^{\pi/2} \ln(\sin x) \, dx = -\frac{\pi}{2} \ln 2, \quad \frac{1}{\prod_{p=2}^{p_m} (1-1/p^2)} = \prod_{p=2}^{p_m} \sum_{k=0}^{+\infty} \frac{1}{p^{2k}},$$

$$\int_{0}^{\pi/2} \ln(\sin x) \, dx = -\frac{\pi}{2} \ln 2, \quad \frac{1}{\prod_{p=2}^{p_m} (1-1/p^2)} = \prod_{p=2}^{p_m} \sum_{k=0}^{+\infty} \frac{1}{p^{2k}},$$

$$\int_{0}^{\pi/2} \ln(\sin x) \, dx = -\frac{\pi}{2} \ln 2, \quad \frac{1}{\prod_{p=2}^{p_m} (1-1/p^2)} = \prod_{p=2}^{p_m} \sum_{k=0}^{+\infty} \frac{1}{p^{2k}},$$

$$\int_{0}^{\pi/2} \ln(\sin x) \, dx = -\frac{\pi}{2} \ln 2, \quad \frac{1}{\prod_{p=2}^{p_m} (1-1/p^2)} = \prod_{p=2}^{p_m} \sum_{k=0}^{+\infty} \frac{1}{p^{2k}},$$

$$\int_{0}^{\pi/2} \ln(\sin x) \, dx = -\frac{\pi}{2} \ln 2, \quad \frac{1}{\prod_{p=2}^{p_m} (1-1/p^2)} = \prod_{p=2}^{p_m} \sum_{k=0}^{+\infty} \frac{1}{p^{2k}},$$

$$\int_{0}^{\pi/2} \ln(\sin x) \, dx = -\frac{\pi}{2} \ln 2, \quad \frac{1}{\prod_{p=2}^{p_m} (1-1/p^2)} = \frac{1}{p^{2k}},$$

$$\int_{0}^{\pi/2} \ln(1-1/p^2) \, dx = -\frac{\pi}{2} \ln 2, \quad \frac{1}{(1+x)^2} = \frac{1}{1+x},$$

$$\int_{0}^{\pi/2} \ln(1-1/p^2) \, dx = -\frac{\pi}{2} \ln 2, \quad \frac{1}{(1+x)^2} = \frac{1}{1+x},$$

$$\int_{0}^{\pi/2} \ln(1-1/p^2) \, dx = -\frac{\pi}{2} \ln 2, \quad \frac{1}{(1+x)^2} = \frac{1}{1+x},$$

$$\int_{0}^{\pi/2} \ln(1-1/p^2) \, dx = -\frac{\pi}{2} \ln 2, \quad \frac{1}{(1+x)^2} = \frac{1}{1+x},$$

$$\int_{0}^{\pi/2} \ln(1-1/p^2) \, dx = -\frac{\pi}{2} \ln 2, \quad \frac{1}{(1+x)^2} = \frac{1}{1+x},$$

$$\int_{0}^{\pi/2} \ln(1-1/p^2) \, dx = -\frac{\pi}{2} \ln 2, \quad \frac{\pi}{2} \ln 2, \quad \frac{\pi}{2$$

INTRODUCTION

GETTING STARTED

BUILDING BLOCKS

KEYWORDS

INLINE MATH

DISPLAYED MATH

EQUATION LABELS

ENUNCIATIONS

ILLUSTRATIONS

Integral grupp slut derivation med undre index d borrodykt omfatta, och är elika med av är större än, eller mindre än ären delmängd av, eller lika med erämpsvindet der partial derivative för all avsmettenslik inde dimension applied to the rational numbers i barrodyn av delven av delvens av delvens i standarden av delvens av

10 Meaningful mathematics

10.1 Introduction

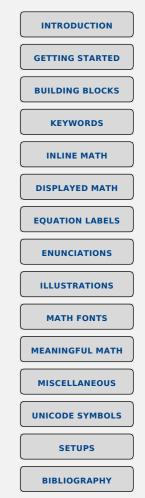
We have so far focused mainly on how to typeset mathematics; we have not discussed so much about the meaning of the formulas. It should be clear that \sqrt{x} stands for the square root of x, but many other symbols are used with more than one meaning. When we see a formula, we can often guess the intended meaning from the context, in particular if the author has used standard notation, introduced new notation, not used the same notation to mean several things, and kept the notation as simple as possible. There are, however, ambiguous cases.

We give one example where the situation might not be completely clear. If, in a manuscript on complex analysis, we meet the formula $\overline{z} \in \overline{U}$, we will likely interpret the first bar as the complex conjugate of the complex number z. But the meaning of \overline{U} is perhaps less clear. The \in hints that it should be a set. One standard notation implies that it denotes the closure of the set U. But it could also, in principle, mean the set of complex conjugate of the elements in the set U. Even if the bars over these characters look the same in the pdf file, it would be good if it was possible also to carry the meaning somehow.

If somebody who copies the formula from the pdf they shall get something sensible out of it when pasting it elsewhere. It is therefore important to work with the symbols predefined in Unicode math, and not to come up with own weird symbols by clipping, rotating, or in other problematic ways combining symbols and perhaps also rules.

Unicode math contains a lot of symbols. Many of them are described with names that rather say something about the shape than about how they are supposed to be used.

GETTING STARTED
BUILDING BLOCKS
KEYWORDS
INLINE MATH
DISPLAYED MATH
EQUATION LABELS
ENUNCIATIONS
ILLUSTRATIONS
MATH FONTS
MEANINGFUL MATH
MISCELLANEOUS
UNICODE SYMBOLS
SETUPS
BIBLIOGRAPHY


INTRODUCTION

Given that we are free to use whatever symbol to denote anything, this is perhaps natural. But it is also problematic. Take \otimes (its official name is CIRCLED TIMES), for example. It comes with two synonyms that tell a bit how it can be used "tensor product" and "vector pointing into page". For the first usage the macro name **\otimes** has traditionally in TEX been attached to the symbol. But, as the synonym says, sometimes it also denotes a vector pointing into the page, and then one can question both the macro name and the binary operation class that is attached to it. If one wants to use this symbol in the latter meaning it is natural to define a new macro that typesets the symbol, with a matching class. Observe, however, that such a construct will not change the meaning for someone copying the symbol from the pdf. It will still be CIRCLED TIMES.

10.2 Accessibility, tagging

When it comes to accessibility, the situation becomes even more interesting. How shall a screen reader read the symbol \otimes ? As "CIRCLED TIMES", as "tensor product" or as "points into the page"? Or perhaps as "otimes"? ConTEXt has for a long time been able to tag documents that include mathematics and also export them to MathML. As of now, the formulas are transformed into some core MathML and included as attachments in the pdf file. Meaning easily gets lost in this conversion, so one can question how accessible the result actually is for a person who needs to have it read aloud. Moreover, the MathML itself, or the flavor of it, sometimes changes. For example, the mfenced element recently got deprecated, leading to compatibility issues for a lot of existing documents. This lack of stability makes it both difficult and demotivating to support tagging.

It can be useful to have the MathML if one wants to export and show the output on a web site. One shall remember, though, that the typeset math from ConT_EXt that one gets in a

pdf file is not in general equivalent (features differ) to the MathML produced, so it will not be perfect.

The example $\overline{z} \in \overline{U}$, discussed in the introduction comes out like this (we have replaced the math italic z and U so that they show below since they are not present in the monotype font we use)

<math>

<mrow> <mover> <mo></mo> </mover> <mo>E</mo> <mover> <mo>E</mo> </mover> </mover>

Let us also mention that it is not easy to verify that the tagging actually works. At Lund university, where Mikael is working, the tool Ally (as a plugin to the Canvas LMS) is used to check the tagged pdf files, and it does usually mark tagged pdf files from Con-TEXt as being perfectly tagged. But even here, things do change. At some point it was changed so that formulas were seen as attached images, and then it complained about lacking alternative texts. It is also an interesting fact that exporting a claimed perfectly

tagged pdf file into sound (also possible in Canvas LMS), it does not read the formulas correctly, if at all.

10.3 Dictionaries

With the right mark up and choice of notation from the writer, it should be possible to have it read different things, depending on the context. We therefore came up with dictionaries. They make it possible for symbols to carry a meaning and context, in addition to the atom class. In fact, we shall think of it as something that is independent of the atom class. A Unicode character can thus have several instances, where different instances might belong to different groups. Of course the math class can also vary. Thus, for \otimes it could be like this:

Symbol	Macro	Class	Group	Meaning
\otimes	\tensorproduct	binary operator	binary operator	tensor product
\otimes	\pointsintopage	ordinary	unary arithmetic	points into the page

The idea is then that the user can specify the groups used in a document. If one typesets a document on mathematical logic, one can load the groups that are attached to logic, and one will have these macros predefined, likely with the intended meaning. One can of course add or change the setup as well.

10.4 Formulas converted into text

One reason to introduce dictionaries with groups, in addition to atom classes, is that we can now use the label system in ConTEXt to attach to each symbol also a label that tells how it could be read out. The same has been done for various macros, and as a result we can convert formulas into "spoken mathematics", something that will be easily read by

INTRODUCTION **GETTING STARTED BUILDING BLOCKS KEYWORDS INLINE MATH DISPLAYED MATH** EQUATION LABELS **ENUNCIATIONS ILLUSTRATIONS** MATH FONTS **MEANINGFUL MATH** MISCELLANEOUS UNICODE SYMBOLS SETUPS **BIBLIOGRAPHY**

screen readers, since it is only text. Of course, given the amount of symbols and macros, we are not complete. In fact, we do not want to be complete either, and the reason is simple: We cannot know how various authors want their formulas to be spoken. So, what we have is merely a proof of concept, with a set of interpretations that covers many basic usages of commonly used symbols.

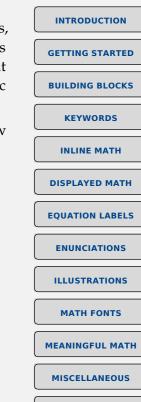
To get a hold of it, let us look at a few simple examples, where we after each formula show how it is interpreted in text.

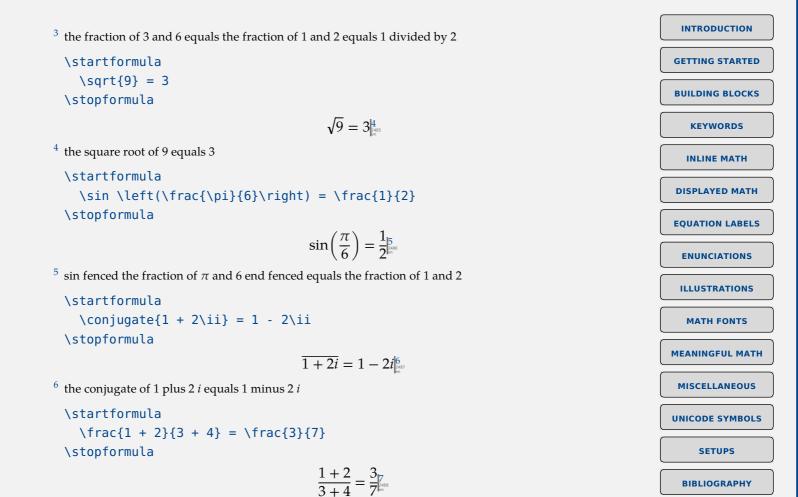
\startformula 1 + 2 = 3\stopformula

 $1+2=3^{1}_{2482}$

¹ 1 plus 2 equals 3

\startformula $3^2 + 4^2 = 5^2$ \stopformula


$$3^2 + 4^2 = 5^2 \frac{2}{2483}$$


 $\frac{3}{6} = \frac{1}{2} = 1/2^{3}_{\text{en}}$

² 3 squared plus 4 squared equals 5 squared

\startformula $\frac{3}{6} = \frac{1}{2} = 1/2$ \stopformula

UNICODE SYMBOLS

⁷ the fraction of 1 plus 2 and denominator 3 plus 4 end denominator equals the fraction of 3 and 7

10.5 Some difficulties and comments

The process has really been trial and error. There is for sure space for improvements and variations, but we believe that the main structure is there. Different areas of mathematics come with different notation and different ways to interpret. So, if for example a logician wants to take this up, there is for sure some basic tuning before it works as expected.

One of the difficulties we encountered along the way was how to work with parentheses. When we write a(b + c) we likely read it as "*a* times *b* plus *c*". But we cannot read it like that, since that could equally well be interpreted as ab + c. We need the parentheses to be interpreted as some group:

```
\startformula
    a(b + c)
\stopformula
```

 $a(b+c)^{8}_{\frac{2494}{en}}$

⁸ *a* times group *b* plus *c* end group

On the other hand, when we write f(x) it is likely that it shall be interpreted as "*f* of *x*" rather than "*f* times *x*".

\startformula
 f(x) \neq f\of(x)
\stopformula

INTRODUCTION **GETTING STARTED** BUILDING BLOCKS **KEYWORDS INLINE MATH DISPLAYED MATH EQUATION LABELS ENUNCIATIONS ILLUSTRATIONS** MATH FONTS **MEANINGFUL MATH** MISCELLANEOUS UNICODE SYMBOLS SETUPS

BIBLIOGRAPHY

 $f(x) \neq f(x) \stackrel{9}{\neq} f(x) \stackrel{9}{=}$

⁹ f times group x end group is not equal to f of group x end group

In addition to the **\of** to handle this case, we also introduced the possibility to declare glyphs as being functions. So, it is possible to do

```
\registermathfunction[]
```

and then leave out the \of. In fact, one of the main difficulties has been to control when the explicit "times" shall be there and when it shall not. There are several special cases; we have likely missed a few.

It is also possible to declare whole alphabets as being for example vectors or matrices. We can do

```
\registermathsymbol[default][en][lowercasebold][the vector]
```

and then use them as follows:

```
\startformula
 (\alpha + \beta) \mathbf{u} = \alpha \mathbf{u} + \beta \mathbf{u}
\stopformula
```

 $(\alpha + \beta) \mathbf{u} = \alpha \mathbf{u} + \beta \mathbf{u}_{\text{eff}}^{10}$

¹⁰ group α plus β end group times the vector **u** equals α times the vector **u** plus β times the vector **u**

10.6 A few more examples

We give a few more examples for you to ponder.

\startformula a 1(1 + x) + (1 + y)b 1 - a 2(1 + z) - (1 + u)b 2 KEYWORDS

BUILDING BLOCKS

INLINE MATH

DISPLAYED MATH

EQUATION LABELS

ENUNCIATIONS

ILLUSTRATIONS

MATH FONTS

MEANINGFUL MATH

MISCELLANEOUS

UNICODE SYMBOLS

SETUPS

\stopformula

$$a_1(1+x) + (1+y)b_1 - a_2(1+z) - (1+u)b_2$$

¹¹ *a* with lower index 1 times group 1 plus *x* end group plus group 1 plus *y* end group times *b* with lower index 1 minus *a* with lower index 2 times group 1 plus *z* end group minus group 1 plus *u* end group times *b* with lower index 2

```
\startformula
  a_{0}.a_{1}\notimes a_{2} \ldots a_{n} \ldots
\stopformula
```

 $a_0.a_1a_2...a_n...a_n$

 12 *a* with lower index 0 . *a* with lower index 1 , *a* with lower index 2 , and so on, *a* with lower index *n* , and so on,

\startformula
 h'\of(x) \neq h'(x)
\stopformula

 $h'(x) \neq h'(x) |_{\frac{13}{400}}$

¹³ *h* prime of group *x* end group is not equal to *h* prime of group *x* end group

\startformula
 s\of(1) = s\of(\set{0}) = \set{0} \cup \set{\set{0}}
\stopformula

$$s(1) = s(\{0\}) = \{0\} \cup \{\{0\}\}$$

¹⁴ *s* of group 1 end group equals *s* of group the set 0 end the set end group equals the set 0 end the set union the set the set 0 end the set end the set

INTRODUCTION

GETTING STARTED

MATH FONTS

MEANINGFUL MATH

MISCELLANEOUS

UNICODE SYMBOLS

SETUPS

 $\tartformula a \ ax^{1/2} \ ax^{1/3} = a \ x^{1/2} \ x^{1/3} = a \ x^{1/3} = a \ x^{1/3} \ x^{1/3} \ x^{1/3} \ x^{1/3} = a \ x^{1/3} \ x$

$$a\sqrt{x} = ax^{1/2} \neq ax^{1/3} = a\sqrt[3]{x}$$

¹⁵ *a* times the square root of *x* equals *a* times *x* to the power of group 1 divided by 2 end group is not equal to *a* times *x* to the power of group 1 divided by 3 end group equals *a* times the root with degree 3 of *x*

```
\startformula
```

 $\tationals = \tationals = \ta$

$$\mathbb{Q} = \left\{ \frac{p}{q} \, \middle| \, p, q \in \mathbb{Z} \land q \neq 0 \right\}_{\mathbb{R}^n}^{\mathbb{I}}$$

¹⁶ the rational numbers equals the set the fraction of p and q such that p comma q belongs to the integers and q is not equal to 0 end the set

```
\startformula
f \mapsas x \mapsto x + \exp(x)
```

\stopformula

 $f: x \mapsto x + \exp(x) |_{\frac{2508}{6n}}$

¹⁷ *f* is defined so that *x* maps to *x* plus exp of *x*

```
\startformula
  \lim_{k \tendsto +\infty} \frac{A_k}{B_k}
```

\stopformula

373

¹⁸ the limit under group *k* tends to plus infinity end group the fraction of numerator *A* with lower index *k* end numerator and denominator *B* with lower index *k* end denominator

\startformula

 $\Gamma_{13}^{24} \neq \Gamma_{13}^{24} |_{_{e^n}^{2510}}^{4}$

¹⁹ Γ postscripts sub 1 super 2 sub 3 super 4 end scripts is not equal to Γ postscripts sub 1 super 2 sub 3 super 4 end scripts

```
\startformula
```

 $int_{a}^{b} f'(x) \ dd x = f(b) - f(a)$ stopformula

 $\int_{a}^{b} f'(x) \, dx = f(b) - f(a)|_{\text{min}}^{20}$

²⁰ integral from *a* to *b*, of *f* prime of group *x* end group differential d *x* equals *f* times group *b* end group minus *f* times group *a* end group

\startformula
 \int_{\Omega} f \dd \mu = 0
 \stopformula

GETTING STARTED

INTRODUCTION

BUILDING BLOCKS

KEYWORDS

INLINE MATH

DISPLAYED MATH

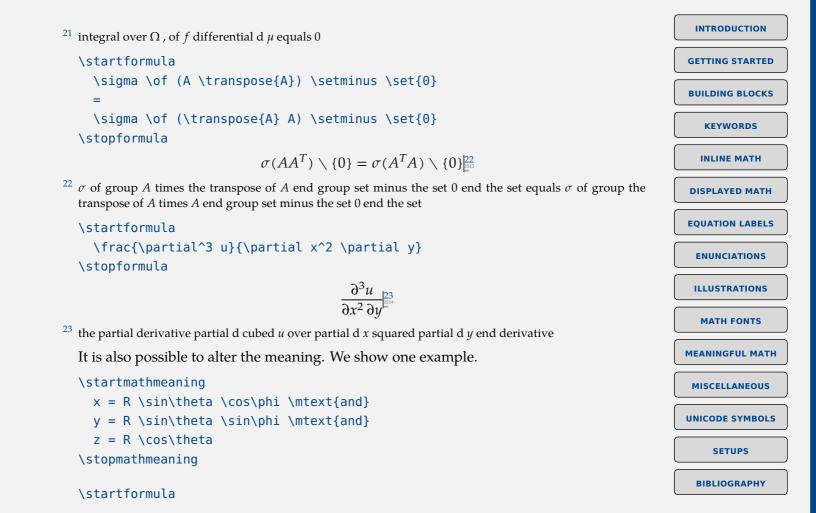
EQUATION LABELS

ENUNCIATIONS

ILLUSTRATIONS

MATH FONTS

MEANINGFUL MATH

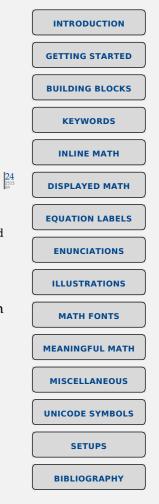

MISCELLANEOUS

UNICODE SYMBOLS

SETUPS

BIBLIOGRAPHY

$\int_{\Omega} f \, d\mu = 0^{|21}_{\text{len}}$




```
\label{eq:startalign} $$ \ \ x \in Q \
```

²⁴ x = R the function sin θ times the function cos ϕ and y = R the function sin θ times the function sin ϕ and z = R the function cos θ

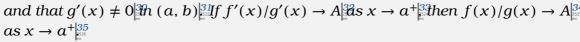
10.7 A longer example, revisited

We show below again the example from the introduction, this time with the math interpretations written out. To get some variation, we use here TEXGyre Bonum.

We prove the l'Hospital rule directly from the Lagrange mean value theorem, without using the Cauchy mean value theorem.

Anders Holst Mikael P. Sundqvist

Abstract. At our first-year calculus course for engineers we discuss Lagrange's mean value theorem but not Cauchy's mean value theorem, and for this reason we usually give a weak form of l'Hospital's rule on limits. In this note we give a simple proof of the stronger version of l'Hospital's rule, using only Lagrange's mean value theorem and elementary results on limits and derivatives.


We formulate and prove the l'Hospitals rule for one-sided limits. This in fact strengthen the usual formulation slightly.

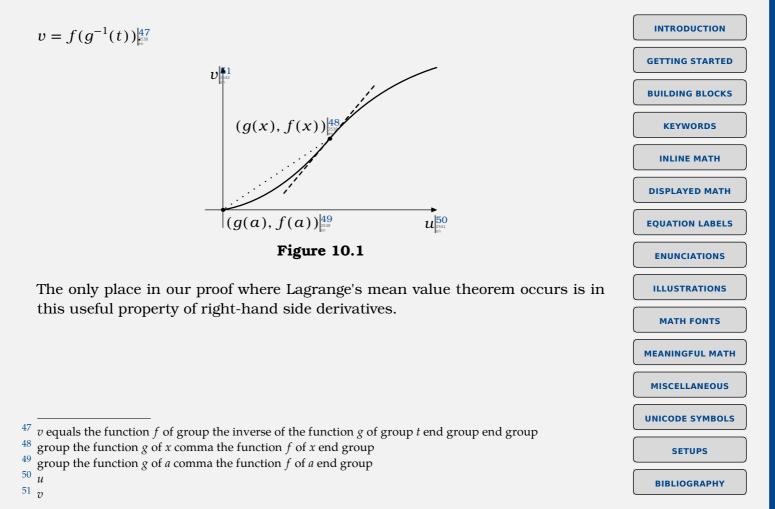
Theorem 10.3 (l'Hospital's rule). Assume that the functions f | and g | are continuous in [a, b) | and differentiable in (a, b) | Assume further that <math>f(a) = g(a) = 0

- ²⁷ the right open interval a comma b end the right open interval
- ²⁸ the open interval *a* comma *b* end the open interval
- ²⁹ the function f of a equals the function g of a equals 0

 $^{^{25}}$ the function *f*

 $^{^{26}}$ the function *g*

A geometric interpretation of the l'Hospital rule goes as follow. In the uv plane, draw the curve parametrized by u = g(x) and v = f(x). Then the direction coefficient f(x)/g(x) of the secant (dotted in Figure 10.1) connecting (g(x), f(x))with (g(a), f(a)) = (0, 0) should approach the same value as the direction coefficient f'(x)/g'(x) of the tangent to the curve at (g(x), f(x)) dashed in Figure 10.1) as x approaches a_{in}^{45} Our proof of the theorem uses that we can parametrize this curve locally around the origin as a function graph u = t and


- ³² the function *f* prime of *x* divided by the function *g* prime of *x* tends to *A*
- ³³ *x* tends to *a* with upper index plus
- ³⁴ the function *f* of *x* divided by the function *g* of *x* tends to *A*
- 35 *x* tends to *a* with upper index plus
- $\frac{36}{u}$ times v
- ³⁷ *u* equals the function *g* of *x*
- ³⁸ v equals the function f of x
- ³⁹ the function *f* of *x* divided by the function *g* of *x*
- ⁴⁰ group the function *g* of *x* comma the function *f* of *x* end group
- ⁴¹ group the function g of a comma the function f of a end group equals group 0 comma 0 end group
- ⁴² the function *f* prime of *x* divided by the function *g* prime of *x*
- ⁴³ group the function *g* of *x* comma the function *f* of *x* end group
- ⁴⁴ x
- ⁴⁵ a
- ⁴⁶ u equals t

34	INTRODUCTION
	GETTING STARTED
	BUILDING BLOCKS
- O 31	KEYWORDS
	INLINE MATH
	DISPLAYED MATH
	EQUATION LABELS
	ENUNCIATIONS
	ILLUSTRATIONS
	MATH FONTS
	MEANINGFUL MATH
	MISCELLANEOUS
	UNICODE SYMBOLS
	SETUPS
	BIBLIOGRAPHY

INTRODUCTION

³⁰ the function *g* prime of *x* is not equal to 0

³¹ the open interval a comma b end the open interval

Lemma 10.4. Let $c > 0^{52}$ Assume that $\phi: [0, c) \to \mathbb{R}$ is continuous in [0, c) and differentiable in $(0, c)^{52}$ and that $\lim_{t\to 0^+} \phi'(t)$ exists and equals A^{57} Then

$$\lim_{n \to 0^+} \frac{\phi(0+h) - \phi(0)}{h} = A._{\text{last}}^{156}$$

Proof. For $h \in (0, c)$ the differential quotient $(\phi(0+h) - \phi(0))/h$ equals $\phi'(\xi_h)^{61}$ for some $\xi_h \in (0, h)^{62}$ by Lagrange's mean value theorem. As $h \to 0^+$ we have $\xi_h \to 0^+$ and so

$$\lim_{h \to 0^+} \frac{\phi(0+h) - \phi(0)}{h} = \lim_{h \to 0^+} \phi'(\xi_h) = A._{\text{line}}^{65}$$

⁵² *c* is greater than 0

⁵³ ϕ maps the right open interval 0 comma *c* end the right open interval to the real numbers

- ⁵⁴ the right open interval 0 comma c end the right open interval
- ⁵⁵ the open interval 0 comma c end the open interval
- ⁵⁶ the limit under group *t* tends to 0 with upper index plus end group ϕ prime of group *t* end group ⁵⁷ *A*
- ⁵⁸ the limit under group *h* tends to 0 with upper index plus end group the fraction of numerator ϕ group 0 plus *h* end group minus ϕ group 0 end group end numerator and *h* equals *A*
- ⁵⁹ h belongs to the open interval 0 comma c end the open interval
- ⁶⁰ group ϕ group 0 plus *h* end group minus ϕ group 0 end group end group divided by *h*
- ⁶¹ ϕ prime of group ξ with lower index *h* end group
- ⁶² ξ with lower index *h* belongs to the open interval 0 comma *h* end the open interval
- 63 *h* tends to 0 with upper index plus
- ⁶⁴ ξ with lower index *h* tends to 0 with upper index plus
- ⁶⁵ the limit under group *h* tends to 0 with upper index plus end group the fraction of numerator ϕ group 0 plus *h* end group minus ϕ group 0 end group end numerator and *h* equals the limit under group *h* tends to 0 with upper index plus end group ϕ prime of group ξ with lower index *h* end group equals *A*

KEYWORDS

INLINE MATH

DISPLAYED MATH

EQUATION LABELS

ENUNCIATIONS

ILLUSTRATIONS

MATH FONTS

MEANINGFUL MATH

MISCELLANEOUS

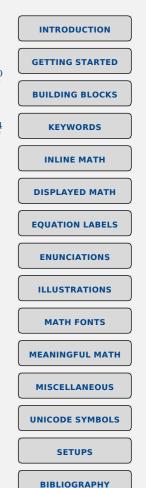
UNICODE SYMBOLS

SETUPS

BIBLIOGRAPHY

Proof (of Theorem 10.3). Since $g' \cong$ s a Darboux function it will not change sign in $(a, b) \cong$ and for simplicity we assume that $g' > 0 \cong$ this interval. Lagrange's mean value theorem assures that $g \cong$ s strictly monotone in the interval $[a, b) \cong$ and thus that it has an inverse $g^{-1}: [0, g(b)) \to [a, b) \cong$

The composite function $\phi: t \mapsto f(g^{-1}(t))^{72}_{t} \in [0, g(b))^{73}_{t}$ s continuous at $t = 0^{74}_{t}$ and differentiable for $t \in (0, g(b))^{75}_{t}$ By the substitution $t = g(x)^{74}_{t}$ the given limit, together with the chain rule and the rule of derivatives of inverse functions, we get


$$A = \lim_{x \to a^+} \frac{f'(x)}{g'(x)} = \lim_{t \to 0^+} \frac{f'(g^{-1}(t))}{g'(g^{-1}(t))} = \lim_{t \to 0^+} \frac{d}{dt} f(g^{-1}(t)) = \lim_{t \to 0^+} \phi'(t) \cdot \lim_{t \to 0^+} \frac{d}{dt} f(g^{-1}(t)) = \lim_{t \to 0^+} \frac{d}{dt} f(g^{-1}(t)) =$$

- ⁶⁷ the open interval a comma b end the open interval
- 68 the function *g* prime is greater than 0

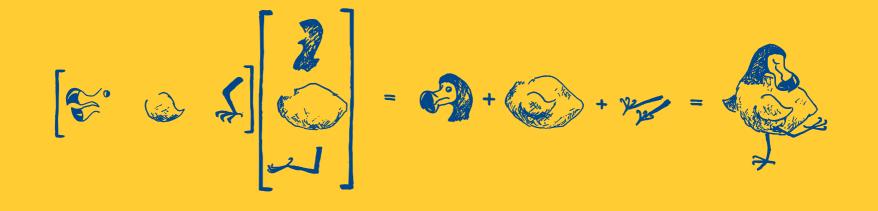
⁶⁹ the function g

- ⁷⁰ the right open interval *a* comma *b* end the right open interval
- ⁷¹ the inverse of the function *g* maps the right open interval 0 comma the function *g* of *b* end the right open interval to the right open interval *a* comma *b* end the right open interval
- ⁷² ϕ is defined so that *t* maps to the function *f* of group the inverse of the function *g* of group *t* end group end group
- 73 *t* belongs to the right open interval 0 comma the function *g* of *b* end the right open interval

- ⁷⁵ *t* belongs to the open interval 0 comma the function *g* of *b* end the open interval
- ⁷⁶ *t* equals the function *g* of *x*
- ⁷⁷ A equals the limit under group x tends to a with upper index plus end group the fraction of numerator the function f prime of group x end group end numerator and denominator the function g prime of group x

⁶⁶ the function *g* prime

⁷⁴ t equals 0


By Lemma 10.4, and by substitution t = g(x) again, we conclude that

$$A = \lim_{t \to 0^+} \frac{\phi(0+t) - \phi(0)}{t} = \lim_{t \to 0^+} \frac{f(g^{-1}(t))}{t} = \lim_{x \to a^+} \frac{f(x)}{g(x)} \cdot |_{\mathbb{R}^n}^{79}$$

This completes the proof.

- end group end denominator equals the limit under group t tends to 0 with upper index plus end group the fraction of numerator the function f prime of group the inverse of the function g of group t end group end group end numerator and denominator the function g prime of group the inverse of the function g of group t end group end group end denominator equals the limit under group t tends to 0 with upper index plus end group the derivative differential d over differential d t end derivative times the function f of group the inverse of the function g of group t end group end group end group t tends to 0 with upper index plus end group the inverse of the function g of group t end group end group equals the limit under group t tends to 0 with upper index plus end group ϕ prime of group t end group times
- ⁷⁸ *t* equals the function *g* of *x*
- ⁷⁹ *A* equals the limit under group *t* tends to 0 with upper index plus end group the fraction of numerator ϕ group 0 plus *t* end group minus ϕ group 0 end group end numerator and *t* equals the limit under group *t* tends to 0 with upper index plus end group the fraction of numerator the function *f* of group the inverse of the function *g* of group *t* end group end group end numerator and *t* equals the limit under group *x* tends to *a* with upper index plus end group the fraction of numerator the function *f* of group *x* end group end numerator the function *f* of group *x* end group end numerator and denominator the function *g* of group are fraction of numerator the function *f* of group *x* end group end numerator and denominator the function *g* of group *x* end group end denominator

INTRODUCTION
GETTING STARTED
BUILDING BLOCKS
KEYWORDS
INLINE MATH
DISPLAYED MATH
EQUATION LABELS
ENUNCIATIONS
ILLUSTRATIONS
MATH FONTS
MEANINGFUL MATH
MISCELLANEOUS
UNICODE SYMBOLS
SETUPS
BIBLIOGRAPHY

11 Miscellaneous

11.1 Introduction

In this section we collected some topics that we felt did not really fit elsewhere. The content here will likely change, and is not really part of the base material.

11.2 Defining math commands

Most mechanisms come with their own definition possibilities to define new instances. Sometimes it might, however, be motivated to define own macros, and then there is the macro \definemathcommand to get some assistance.

```
For example, \bigl is defined by
```

```
\definemathcommand [bigl] [open] [one] {\big}
```

The one means that it takes one argument, the open that the result will be of class open. This technique could in principle also be used to define symbols that do not have slots in Unicode, but maybe should. But then one should also have in mind what happens when copying and pasting from the PDF.

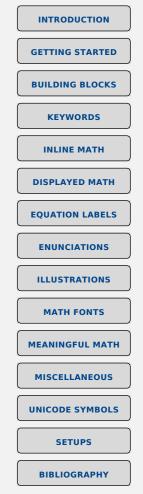
The stuff that is put into the definition can be rather complicated. We show one more example.

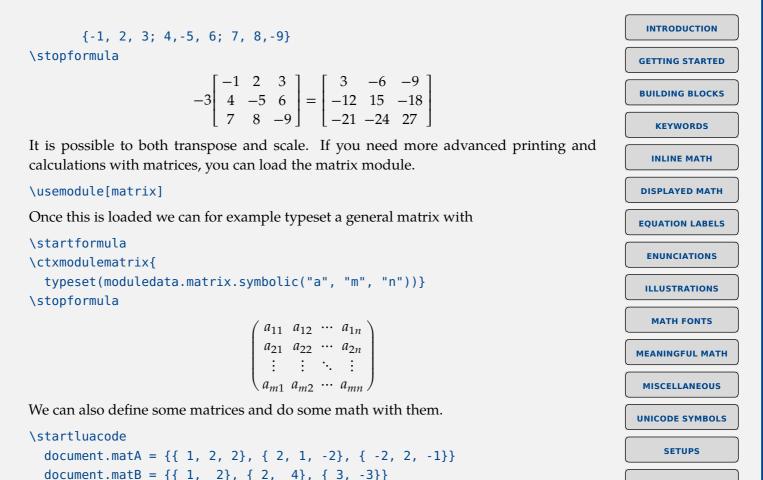
```
\definemathcommand
[slashD]
[ordinary]
{\Umathaccent class \mathordinarycode exact overlay 0 0 "338 {D}}
```

\startformula
 \slashD = \gamma^^{\mu} D__{\mu}
\stopformula

 $D = \gamma^{\mu} D_{\mu}$

11.3 Manipulating matrices


If you want to show both a matrix and its transpose, you do not need to rewrite the matrix again. There is an action key that lets you do some simple manipulations of the matrix.


```
\startformula
\bmatrix{-1, 2, 3; 4,-5, 6; 7, 8,-9}^T =
\bmatrix
  [action=transpose]
  {-1, 2, 3; 4,-5, 6; 7, 8,-9}
\stopformula
```

		3 -			-1	4	7]	
4	-5	6	=	=	2	-5	8	
7		-9			3	6	-9	

In addition to transposing one can also scale the matrix with the action key. If you use action=negate you scale by -1.

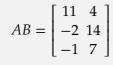
```
\startformula
-3 \bmatrix{-1, 2, 3; 4,-5, 6; 7, 8,-9} =
    \bmatrix
    [action={{scale,-3}}]
```



```
matrixoption = {fences = "brackets"}
```

\stopluacode

\startformula


\stopformula

\startformula

\stopformula

AB = \directlua{

INTRODUCTION First we typeset them. By adding matrixoption as en extra argument to typeset we **GETTING STARTED** get the matrix with brackets instead of parentheses. Here brackets can be changed into **BUILDING BLOCKS** parentheses or bars. **KEYWORDS** A = \directlua{moduledata.matrix.typeset(document.matA)}\mtp{,} **INLINE MATH** B = \directlua{moduledata.matrix.typeset(document.matB,matrixoption)} **DISPLAYED MATH** $A = \begin{pmatrix} 1 & 2 & 2 \\ 2 & 1 & -2 \\ -2 & 2 & -1 \end{pmatrix}, \quad B = \begin{vmatrix} 1 & 2 \\ 2 & 4 \\ 3 & -3 \end{vmatrix}$ **EQUATION LABELS ENUNCIATIONS** The module supports the calculation of inverses, transposes and determinants of matrices. **ILLUSTRATIONS** MATH FONTS moduledata.matrix.typeset(**MEANINGFUL MATH** moduledata.matrix.product(document.matA, MISCELLANEOUS document.matB), **UNICODE SYMBOLS** matrixoption)} SETUPS

It is also possible to perform row operations, write a matrix in row echelon form, as well as to solve linear equations. You can find examples by looking in (and compiling) m-matrix.mkiv.

11.4 Systems of equations

We have emphasized simplicity. Thus, with a system of equations, we have suggested to either write them in the same line if possible,

$$x^2 + y^2 = 1, \quad y + 2x = 1$$

or put on top of each other, aligned on the equal sign,

$$x^{2} + y^{2} = 1$$
,
 $y + 2x = 1$.

We have emphasized that it does not make sense to align more terms in the equations. In linear algebra books, one often sees alignments on more terms (that mess up the spacing in the equations, but that is usually not seen as an issue). In ConT_EXt we can use the simplealign mechanism for this, and in particular there is implemented a parser (a bit like simplecommand for matrices) that will let us type the equations in a natural way without lots of alignment characters. We give a few examples.

```
\startformula
  \equationsystem {
```

BIBLIOGRAPHY

SETUPS

х	-	У	-	Z	=	2,
{-2}x	-	Зу	+	{3a}z	=	12,
				4z	=	{-3},
}						

- z = 2	x - y
+3az = 12	-2x - 3y
+ $4z = -3$	

\startformula

\stopformula

 $\ell = \{x - y - z = 2, -5y + \{(3a-5)\}z = 16, 4z = \{-3\}\}$ \iff

 $lequationsystem{x - y - z = 2, -5y + {(3a-5)}z = 16, 4z = {-3}}$ \stopformula

$$\begin{cases} x - y - z = 2 \\ -5y + (3a - 5)z = 16 \\ + 4z = -3 \end{cases} \begin{cases} x - y - z = 2 \\ -5y + (3a - 5)z = 16 \\ + 4z = -3 \end{cases}$$

Note that the 4z in 4z = -3 gets an extra plus in front, just as the minus sign in front of -5y must be present.

11.5 Polynomial long division

Polynomial long division is usually taught in highschool. It can be a tiresome task to type, and there are several ways to do this. We will show below how to do this in ConTFXt

388
INTRODUCTION
GETTING STARTED
BUILDING BLOCKS
KEYWORDS
INLINE MATH
DISPLAYED MATH
EQUATION LABELS
ENUNCIATIONS
ILLUSTRATIONS
MATH FONTS
MEANINGFUL MATH
MISCELLANEOUS
UNICODE SYMBOLS
SETUPS

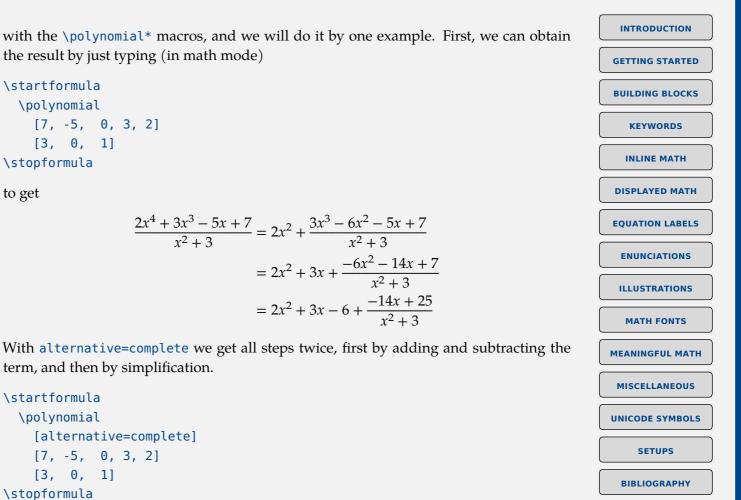
\startformula

\stopformula

\startformula \polynomial

\stopformula

[7, -5, 0, 3, 2]


[3, 0, 1]

to get

\polynomial

[3, 0, 1]

[7, -5, 0, 3, 2]

$$\frac{2x^4 + 3x^3 - 5x + 7}{x^2 + 3} = \frac{2x^2(x^2 + 3) + 2x^4 + 3x^3 - 5x + 7 - 2x^2(x^2 + 3)}{x^2 + 3}$$

$$= 2x^2 + \frac{3x^3 - 6x^2 - 5x + 7}{x^2 + 3}$$

$$= 2x^2 + \frac{3x(x^2 + 3) + 3x^3 - 6x^2 - 5x + 7 - 3x(x^2 + 3)}{x^2 + 3}$$

$$= 2x^2 + 3x + \frac{-6x^2 - 14x + 7}{x^2 + 3}$$

$$= 2x^2 + 3x + \frac{-6(x^2 + 3) - 6x^2 - 14x + 7 + 6(x^2 + 3)}{x^2 + 3}$$

$$= 2x^2 + 3x - 6 + \frac{-14x + 25}{x^2 + 3}$$
INTRODUCTION
INTRODUCTION

By running \polynomial a few macros also get defined. They give us access to the various parts in the polynomial division. If we want to play with them, it might also be handy to use the option alternative=none. Then no output is given. Thus, if we do

```
\polynomial
```

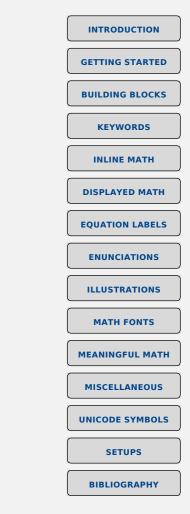
[alternative=none] [7, -5, 0, 3, 2] [3, 0, 1]

then we will have access to everything in Intermezzo 11.1.

This means that we can do the typesetting a bit as we wish. For instance, if we type

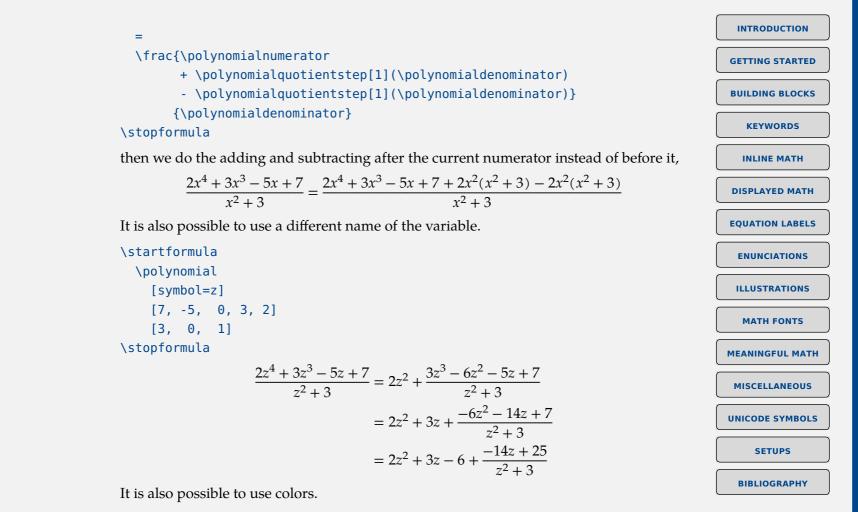
```
\startformula
  \frac{\polynomialnumerator}{\polynomialdenominator}
```

ILLUSTRATIONS


MATH FONTS

MEANINGFUL MATH

MISCELLANEOUS


UNICODE SYMBOLS

SETUPS


```
2x^4 + 3x^3 - 5x + 7
\polynomialnumerator
                          x^{2} + 3
\polynomialdenominator
                           3x^3 - 6x^2 - 5x + 7
\polynomialnumerator[1]
\polynomialnumerator[2]
                         -6x^2 - 14x + 7
\polynomialnumerator[3]
                         -14x + 25
                         2x^{2}
\polynomialquotient[1]
                           2x^2 + 3x
\polynomialquotient[2]
                           2x^2 + 3x - 6
\polynomialquotient[3]
                           2x^2
\polynomialquotientstep[1]
\polynomialquotientstep[2]
                           3x
\polynomialquotientstep[3]
                           -6
\polynomialsteps
                            3
```

Intermezzo 11.1

\startformula
 \polynomial
 [color={1={n=C:1,d=C:2,q=C:3},2={n=C:3,d=C:2,q=C:1}}]
 [7, -5, 0, 3, 2]
 [3, 0, 1]
\stopformula

 $\frac{2x^4 + 3x^3 - 5x + 7}{x^2 + 3} = 2x^2 + \frac{3x^3 - 6x^2 - 5x + 7}{x^2 + 3}$ $= 2x^2 + 3x + \frac{-6x^2 - 14x + 7}{x^2 + 3}$ $= 2x^2 + 3x - 6 + \frac{-14x + 25}{x^2 + 3}$

If we use non-integers, we might get surprised.

\startformula \polynomial [7, -5, 2, 3] [3, 0, 2.7] \stopformula

$$\frac{3x^3 + 2x^2 - 5x + 7}{2.7x^2 + 3} \approx 1.111x + \frac{2x^2 - 8.333x + 7}{2.7x^2 + 3}$$
$$\approx 1.111x + 0.741 + \frac{-8.333x + 4.778}{2.7x^2 + 3}$$

GETTING STARTED
BUILDING BLOCKS
KEYWORDS
INLINE MATH
DISPLAYED MATH
EQUATION LABELS
ENUNCIATIONS
ILLUSTRATIONS
MATH FONTS
MEANINGFUL MATH
MISCELLANEOUS
UNICODE SYMBOLS
SETUPS
BIBLIOGRAPHY

11.6 Frames and decorations of formulas

It is possible to frame formulas.

\startformula

 $\f(0) \$ \stopformula

$$\int_0^x f'(t) \, dt = f(x) - f(0)$$

This mechanism uses the frame mechanism and therefore it is possible to use various keywords.

```
\startformula
 \mframed
  [offset=lex,
    frame=no,
    foregroundcolor=C:1,
    background=color,
    backgroundcolor=C:2]
    { f(x) = f(0) + \int_0^x f'(t) \dd t}
\stopformula
```

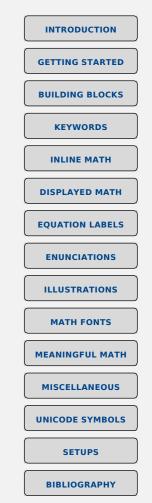
 $f(x) = f(0) + \int_0^x f'(t) dt$

UNICODE SYMBOLS

SETUPS

If we want to frame just a part of a formula, we need to use the framedmath mechanism instead of mframed (yes!).

```
\startformula
f(x) = \mframed{f(0)} + \int_0^x f'(t) \dd t
\breakhere
f(x) = \framedmath{f(0)} + \int_0^x f'(t) \dd t
\stopformula
```


$$f(x) = \boxed{f(0)} + \int_0^x f'(t) dt$$
$$f(x) = \boxed{f(0)} + \int_0^x f'(t) dt$$

It is also possible to set backgrounds using the bar mechanism. With the definition

```
\definebar
[foobar]
[mathbackground]
[height=\strutht,
   depth=\strutdp,
   offset=.5ex,
   color=C:2]
```

we can set the background of the same formula as before as

```
\tartformula \\ foobar { f(x) = f(0) + int 0^x f'(t) \d t }
```


\stopformula

$$f(x) = f(0) + \int_0^x f'(t) \, dt$$

The bar approach also works for formulas that break over a line.

```
\startformula
\foobar {
 f(x)
 \  \  = f(0) + \int dt dt
 }
```

\stopformula

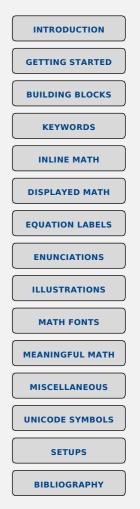
$$f(x) = f(0) + \int_0^x f'(t) dt$$
$$= \frac{d}{dx} \int_0^x f(t) dt$$

There are, of course, limitations to this approach.

\definebar [Foobar] [foobar] [offset=lex, color=C:3]

\definebar

```
[FooBar]
[Foobar]
[color=C:1]
\startformula
\foobar { a \alignhere = \Foobar {b} \breakhere
= c \breakhere = \FooBar {d} + e }
\stopformula
```


Maybe it is more useful for emphasizing a few terms, rather than the whole equation.

= c

\startformula
f(x) = \frac{\dd}{\dd x}\int_0^x f(t) \dd t
 = \foobar{f(0)} + \int_0^x f'(t) \dd t

\stopformula

$$f(x) = \frac{d}{dx} \int_0^x f(t) \, dt = \frac{f(0)}{1 - 1} + \int_0^x f'(t) \, dt$$

12 Unicode symbols

12.1 Introduction

Unicode comes with several blocks that contain mathematical symbols. Below we list the symbols in the math blocks. The structure of the tables is the following (with one example):

Unicode slot	Symbol	Macro	Math class	Description
U+02200	A	∖forall	ordinary	for all

Many of the symbols are indeed defined in $ConT_EXt$ via some macro, but not all. One of the reasons is that we simply do not know how many of the symbols are meant to be used, and there are so many of them, so the names would just become silly. You can define macros for the additional symbols that you need.

```
\definemathsymbol[similar][relation]["02243]
```

Once that is done you can use $\mbox{m{a \similar b}}$ to get $a \simeq b$. Some other Unicode slots do have several macro definitions attached to them, often with a different math class. Use the appropriate one that fits with your intended use case. We give one example with \divides and \mbox{mid} that are both attached to the vertical bar 0×02223 . Note the difference in spacing around the vertical bar.

```
\startformula
    3\divides 15 \mtp{} \{x \in \reals \mid x > 0\}
\stopformula
```

```
3|15 \{x \in \mathbb{R} \mid x > 0\}
```

INTRODUCTION
GETTING STARTED
BUILDING BLOCKS
KEYWORDS
INLINE MATH
DISPLAYED MATH
EQUATION LABELS
ENUNCIATIONS
ILLUSTRATIONS
MATH FONTS
MEANINGFUL MATH
MISCELLANEOUS
UNICODE SYMBOLS
SETUPS
BIBLIOGRAPHY

You may also have noticed that we have switched font in this chapter. We use Stix Two Math since it has a lot more symbols than TEXGyre Pagella Math. If you want to generate lists like the ones below, you can do:

\usemodule[math-characters]
\showmathfontcharacters[list=mathematicaloperators,method=manual]

Possible values for the list key can be found in char-ini.lua.

12.2 Basic latin block

This is not a true math block.

U+0002B	+		binary	plus sign	
	•		5		ENUNCIATIONS
U+0003C	<	\lt	relation	less-than sign	
U+0003D	=	\Relbar	relation	equals sign	ILLUSTRATIONS
		\eq	relation		MATH FONTS
U+0003E	>	\gt	relation	greater-than sign	MATHTONTS
U+0005E	^		ordinary	circumflex accent	MEANINGFUL MATH
U+0007C	1		ordinary	vertical line	
	'	\lvert	open		MISCELLANEOUS
		\mvert	middle		UNICODE SYMBOLS
		\rvert	close		
		\singleverticalbar	delimiter		SETUPS
		\vert	delimiter		
U+0007E	~		relation	tilde	BIBLIOGRAPHY

INTRODUCTION

GETTING STARTED

BUILDING BLOCKS

KEYWORDS

INLINE MATH

DISPLAYED MATH

EQUATION LABELS

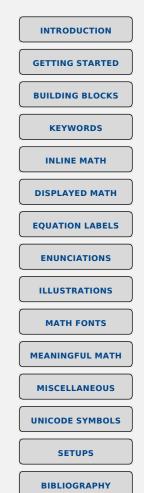
12.3 Latin-1 Supplement block

This is not a true math block.

U+000AC	٦	\lnot	orc
U+000B0	0		ord
U+000B1	±	\pm	bin
U+000D7	×		bin
		\crossproduct	bin
		\times	bin
U+000F7	÷	\div	bin

dinary not sign dinary degree sign nary plus-minus sign nary multiplication sign nary nary nary division sign

12.4 Mathematical operators


U+02200	A	∖forall
U+02201	С	\complement
U+02202	9	\partial
U+02203	Э	\exists
U+02204	∄	\nexists
U+02205	Ø	\emptyset
U+02206	Δ	\laplace
U+02207	∇	\gradient
		∖nabla
U+02208	∈	\in
U+02209	∉	∖nin
		\notin
U+0220A	e	

for all
complement
partial differential
there exists
there does not exist
empty set
increment
nabla
element of
not an element of
small element of

GETTING STARTED BUILDING BLOCKS KEYWORDS INLINE MATH DISPLAYED MATH EQUATION LABELS ENUNCIATIONS ILLUSTRATIONS MATH FONTS **MEANINGFUL MATH MISCELLANEOUS UNICODE SYMBOLS** SETUPS **BIBLIOGRAPHY**

INTRODUCTION

U+0220B	Э	\ni	relation	contains as member
		\owns	relation	
U+0220C	∌	\nni	relation	does not contain
				as member
		\nowns	relation	
U+0220D	Э		ordinary	small contains
				as member
U+0220E			ordinary	end of proof
U+0220F	Π	\prod	operator	n-ary product
U+02210	П	\coprod	operator	n-ary coproduct
U+02211	Σ	\sum	operator	n-ary summation
U+02212	_	\minus	binary	minus sign
		\relbar	relation	
U+02213	Ŧ	\mp	binary	minus-or-plus sign
U+02214	÷	\dotplus	binary	dot plus
U+02215	/		ordinary	division slash
U+02216	\backslash	\setminus	binary	set minus
U+02217	*	\adjointsymbol	prime	asterisk operator
		\ast	binary	
		\convolve	binary	
U+02218	o	\circ	binary	ring operator
U+02219	•		binary	bullet operator
U+0221A		\rootradical	root	square root
	•	\surd	ordinary	-

		\surdradical	radical		
U+0221B	3√		ordinary	cube root	GETTING STARTED
U+0221C	4́√		ordinary	fourth root	
U+0221D	\propto	\propto	relation	proportional to	BUILDING BLOCKS
U+0221E	∞	\infty	ordinary	infinity	
U+0221F	L	\rightangle	ordinary	right angle	KEYWORDS
U+02220	\angle	\angle	ordinary	angle	INLINE MATH
U+02221	Ă	\measuredangle	ordinary	measured angle	
U+02222	∢	\sphericalangle	ordinary	spherical angle	DISPLAYED MATH
U+02223		\divides	ordinary	divides	EQUATION LABELS
		\mid	relation		
U+02224	ł		relation	does not divide	ENUNCIATIONS
		\ndivides	ordinary		
		\nmid	relation		ILLUSTRATIONS
U+02225			relation	parallel to	MATH FONTS
		\parallel	relation		
U+02226	∦	\nparallel	relation	not parallel to	MEANINGFUL MATH
U+02227	Λ	\land	binary	logical and	
		\wedge	binary		MISCELLANEOUS
U+02228	V	\lor	binary	logical or	UNICODE SYMBOLS
		\vee	binary		
U+02229	\cap	\cap	binary	intersection	SETUPS
U+0222A	U	\cup	binary	union	BIBLIOGRAPHY
U+0222B	ſ		integral	integral	BIBLIUGRAPHY

		\int	integral		INTRODUCTION
		\intop	ordinary		GETTING STARTED
U+0222C	ſſ		integral	double integral	
	00	\iint	integral	8	BUILDING BLOCKS
		\iintop	ordinary		
U+0222D	ſſſ		integral	triple integral	KEYWORDS
		\iiint	integral		INLINE MATH
		\iiintop	ordinary		
U+0222E	¢	\oint	integral	contour integral	DISPLAYED MATH
U+0222F	∯	\oiint	integral	surface integral	EQUATION LABELS
U+02230	∰	\oiiint	integral	volume integral	
U+02231	ſ	\intclockwise	integral	clockwise integral	ENUNCIATIONS
U+02232	¢	\ointclockwise	integral	clockwise con-	
				tour integral	ILLUSTRATIONS
U+02233	¢	\ointctrclockwise	integral	anticlockwise contour	MATH FONTS
				integral	
U+02234	\therefore	\therefore	ellipsis	therefore	MEANINGFUL MATH
U+02235	\therefore	\because	ellipsis	because	
U+02236	:		punctuatio	on ratio	MISCELLANEOUS
		\colon	punctuatio	n	UNICODE SYMBOLS
		\maps	punctuatio	n	
		\mapsas	punctuatio	n	SETUPS
U+02237	::	\squaredots	relation	proportion	BIBLIOGRAPHY
U+02238	÷	\dotminus	binary	dot minus	BIBLIOGRAPHY

UNICODE SYMBOLS » MATHEMATICAL OPERATORS

U+02239		\minuscolon	relation	excess	INTRODUCTION
	-				
U+0223A			ordinary	geometric proportion	GETTING STARTED
U+0223B	$\dot{\mathbf{v}}$		ordinary	homothetic	
U+0223C	\sim	\sim	relation	tilde operator	BUILDING BLOCKS
U+0223D	\sim	\backsim	relation	reversed tilde	KEYWORDS
U+0223E	2		ordinary	inverted lazy s	
U+0223F	\sim		ordinary	sine wave	INLINE MATH
U+02240	2	\wr	binary	wreath product	
U+02241	\sim	\nsim	relation	not tilde	DISPLAYED MATH
U+02242	$\overline{\sim}$	\eqsim	relation	minus tilde	EQUATION LABELS
U+02243	\simeq	\simeq	relation	asymptotically equal to	
U+02244	≄	\nsimeq	relation	not asymptotically equal	ENUNCIATIONS
				to	
U+02245	\cong	\approxEq	relation	approximately equal to	ILLUSTRATIONS
		\cong	relation		MATH FONTS
U+02246	¥	\napproxEq	relation	approximately but not	MATH FONTS
	-	A STREET A		actually equal to	MEANINGFUL MATH
		\ncong	relation		
U+02247	≇	\approxnEq	relation	neither approximately	MISCELLANEOUS
0102247	+	(upproxiled	Telation	nor actually equal to	
U+02248	≈	\approx	relation	almost equal to	UNICODE SYMBOLS
U+02240			relation	not almost equal to	SETUPS
	≉ ~	\napprox		•	
U+0224A	≊	\approxeq	relation	almost equal or equal to	BIBLIOGRAPHY
U+0224B	≋		relation	triple tilde	

U+0224C	N S		relation	all equal to	INTRODUCTION
U+0224D	\asymp	\asymp	relation	equivalent to	GETTING STARTED
U+0224E	≎	\Bumpeq	relation	geometrically equivalent	
				to	BUILDING BLOCKS
U+0224F	≏		ordinary	difference between	KENINGERG
U+02250	÷	\doteq	relation	approaches the limit	KEYWORDS
U+02251	÷	\Doteq	relation	geometrically equal to	INLINE MATH
		\doteqdot	relation		
U+02252	÷.	\fallingdotseq	relation	approximately equal to or	DISPLAYED MATH
				the image of	EQUATION LABELS
U+02253	≓	\risingdotseq	relation	image of or approxi-	
				mately equal to	ENUNCIATIONS
U+02254	:=	\colonequals	relation	colon equals	
U+02255	=:	\equalscolon	relation	equals colon	ILLUSTRATIONS
U+02256	Þ	\eqcirc	relation	ring in equal to	MATH FONTS
U+02257	<u>•</u>	\circeq	relation	ring equal to	
U+02258	$\widehat{=}$		ordinary	corresponds to	MEANINGFUL MATH
U+02259	≙	\wedgeeq	relation	estimates	
U+0225A	≚	\veeeq	relation	equiangular to	MISCELLANEOUS
U+0225B	<u>*</u>	\stareq	relation	star equals	UNICODE SYMBOLS
U+0225C	≜	\triangleq	relation	delta equal to	
U+0225D	def	\definedeq	relation	equal to by definition	SETUPS
U+0225E	<u>m</u>	\measuredeq	relation	measured by	
U+0225F	?	\questionedeq	relation	questioned equal to	BIBLIOGRAPHY

						(
U+	02260	¥	\ne	relation	not equal to	INTRODUCTION
		-	\neq	relation	•	GETTING STARTED
U+	02261	≡	\equiv	relation	identical to	
U+(02262	≢	\nequiv	relation	not identical to	BUILDING BLOCKS
U+(02263	≣		relation	strictly equivalent to	
U+(02264	\leq	∖le	relation	less-than or equal to	KEYWORDS
			\leq	relation		INLINE MATH
U+(02265	\geq	\ge	relation	greater-than or equal to	
			\geq	relation		DISPLAYED MATH
U+(02266	≦	\leqq	relation	less-than over equal to	EQUATION LABELS
U+(02267	≧	\geqq	relation	greater-than over equal	
					to	ENUNCIATIONS
U+0	02268	≨	\lneqq	relation	less-than but not equal to	
U+(02269	≩	\gneqq	relation	greater-than but not	ILLUSTRATIONS
					equal to	MATH FONTS
U+(0226A	≪	\11	relation	much less-than	
U+(0226B	\gg	\gg	relation	much greater-than	MEANINGFUL MATH
U+(0226C)	\between	relation	between	
U+0	0226D	st	\nasymp	relation	not equivalent to	MISCELLANEOUS
U+(0226E	≮	\nless	relation	not less-than	UNICODE SYMBOLS
U+(0226F	≯	\ngtr	relation	not greater-than	
U+0	02270	≰	\nleq	relation	neither less-than nor	SETUPS
					equal to	
U+	02271	≱	\ngeq	relation	neither greater-than nor	BIBLIOGRAPHY

				equal to	
U+02272	\lesssim	\lesssim	relation	less-than or equivalent to	GETTING STARTED
U+02273	\gtrsim	\gtrsim	relation	greater-than or equiva- lent to	BUILDING BLOCKS
U+02274	\$	\nlesssim	relation	neither less-than nor equivalent to	KEYWORDS
U+02275	≵	\ngtrsim	relation	neither greater-than nor equivalent to	
U+02276	≶	\lessgtr	relation	less-than or greater-than	DISPLAYED MATH
U+02277	≷	\gtrless	relation	greater-than or less-than	EQUATION LABELS
U+02278	≸	\nlessgtr	relation	neither less-than	
				nor greater-than	ENUNCIATIONS
U+02279	≹	\ngtrless	relation	neither greater-than nor	
				less-than	ILLUSTRATIONS
U+0227A	\prec	\prec	relation	precedes	MATH FONTS
U+0227B	\succ	\succ	relation	succeeds	
U+0227C	≼	\preccurlyeq	relation	precedes or equal to	MEANINGFUL MATH
U+0227D	≽	\succcurlyeq	relation	succeeds or equal to	
U+0227E	\precsim	\precsim	relation	precedes or equivalent to	MISCELLANEOUS
U+0227F	\gtrsim	\succsim	relation	succeeds or equivalent to	UNICODE SYMBOLS
U+02280	⊀	\nprec	relation	does not precede	
U+02281	$ \neq$	\nsucc	relation	does not succeed	SETUPS
U+02282	С	\subset	relation	subset of	BIBLIOGRAPHY
U+02283	\supset	\supset	relation	superset of	

U+02284	¢	\nsubset	relation	not a subset of	INTRODUCTION
U+02285	<i>,</i> ⊅	\nsupset	relation	not a superset of	GETTING STARTED
U+02286	⊆	\subseteq	relation	subset of or equal to	
U+02287	⊇	\supseteq	relation	superset of or equal to	BUILDING BLOCKS
U+02288	⊈	\nsubseteq	relation	neither a subset of nor equal to	KEYWORDS
U+02289	⊉	\nsupseteq	relation	neither a superset of nor equal to	INLINE MATH
U+0228A	ç	\subsetneq	relation	subset of with not equal	DISPLAYED MATH
U+0228B	⊋	\supsetneq	relation	to superset of with not	EQUATION LABELS
	-			equal to	ENUNCIATIONS
U+0228C	€		ordinary	multiset	
U+0228D	⊍		ordinary	multiset multiplication	ILLUSTRATIONS
U+0228E	Ĥ	\uplus	binary	multiset union	MATH FONTS
U+0228F		\sqsubset	relation	square image of	
U+02290		\sqsupset	relation	square original of	MEANINGFUL MATH
U+02291		\sqsubseteq	binary	square image of or equal to	MISCELLANEOUS
U+02292	⊒	\sqsupseteq	binary	square original of or equal to	UNICODE SYMBOLS
U+02293	П	\sqcap	binary	square cap	SETUPS
U+02294	Ц	\sqcup	binary	square cup	BIBLIOGRAPHY
U+02295	\oplus	\oplus	binary	circled plus	DIDLIUGRAFHT

U+02296	θ	\ominus	binary	circled minus	
U+02297	\otimes	\otimes	binary	circled times	
U+02298	0	\oslash	binary	circled division slash	GETTING STARTED
U+02299	0	\odot	binary	circled dot operator	BUILDING BLOCKS
U+0229A	0	\circledcirc	binary	circled ring operator	
U+0229B	*	\circledast	binary	circled asterisk operator	KEYWORDS
U+0229C	⊜	\circledequals	binary	circled equals	
U+0229D	Θ	\circleddash	binary	circled dash	
U+0229E	Ē	\boxplus	binary	squared plus	DISPLAYED MATH
U+0229F	H	\boxminus	binary	squared minus	
U+022A0	\square	\boxtimes	binary	squared times	EQUATION LABELS
U+022A1		\boxdot	binary	squared dot operator	ENUNCIATIONS
U+022A2		\vdash	relation	right tack	
U+022A3		\dashv	relation	left tack	ILLUSTRATIONS
U+022A4	Т	\top	ordinary	down tack	
U+022A5	Ì	\bot	ordinary	up tack	MATH FONTS
	_	\orthogonalcomplementsymbol	prime	-F	MEANINGFUL MATH
		\perp	relation		
U+022A6	F		ordinary	assertion	MISCELLANEOUS
U+022A7	ŧ	\models	relation	models	UNICODE SYMBOLS
U+022A8	Þ	\vDash	relation	true	UNICODE STMBOLS
U+022A9	IH	\Vdash	relation	forces	SETUPS
U+022AA	 II⊢	\Vvdash	relation	triple vertical bar right	
0.022///		(********	Tolution	turnstile	BIBLIOGRAPHY

U+022AC	U+022AB	⊫	\VDash	relation	double vertical bar dou-	INTRODUCTION
U+022AD ⊭ \nvDash relation not true BUILDING BLOCKS U+022AF J# \nVDash relation does not force keywords U+022AF J# \nVDash relation negated double vertical bar double right turnstile keywords U+022B0 ⊰ ordinary precedes under relation DispLayED MATH U+022B1 ⊱ ordinary normal subgroup of EQUATION LABELS U+022B3 ⊳ binary normal subgroup of or equal to ENUNCIATIONS U+022B4 ⊴ ordinary contains as normal sub- group or equal to MATH FONTS U+022B5 ⊵ ordinary relation migge of MISCELLANEOUS U+022B6 ⊷ relation migge of MISCELLANEOUS MISCELLANEOUS U+022B8 ↓ uhtimap relation multimap MISCELLANEOUS U+022B4 I \intercal binary intercalate SETUPS U+022B7 ↓ veebar binary xor BIBLIOGRAPHY					ble right turnstile	GETTING STARTED
0+022A0 > (n)00511 netation not nucl 0+022AE > (n)00511 relation does not force KEYWORDS 0+022AF > (n)00511 relation negated double vertical bar double right turnstile intime math 0+022B0 - ordinary precedes under relation Displayed math 0+022B1 > ordinary normal subgroup of EQUATION LABELS 0+022B3 > binary normal subgroup of ENUNCIATIONS 0+022B4 ordinary normal subgroup of or equal to ENUNCIATIONS 0+022B5 ordinary contains as normal sub-group of or equal to Math Fonts 0+022B6 relation original of MATH FONTS 0+022B6 relation mage of MiscelLANEOUS 0+022B7 ordinary nultimap MiscelLANEOUS 0+022B8 multimap relation misge of 0+022B7 ordinary hermitian conju- gate matrix SETUPS 0+022B8 veebar binary	U+022AC	¥	\nvdash	relation	does not prove	
U+022AF ⊯ \nVDash relation negated double vertical bar double right turnstile INLINE MATH U+022B0 ⊰ ordinary precedes under relation DISPLAYED MATH U+022B1 ≻ ordinary succeeds under relation DISPLAYED MATH U+022B2 ⊲ binary normal subgroup of EQUATION LABELS U+022B3 > binary contains as nor- mal subgroup ENUNCIATIONS U+022B4 ⊴ ordinary normal subgroup of or equal to ILLUSTRATIONS U+022B5 ≥ ordinary contains as normal sub- group or equal to MATH FONTS U+022B6 - relation original of MEANINGFUL MATH U+022B7 - multimap MISCELLANEOUS MISCELLANEOUS U+022B8 - \multimap relation multimap MISCELLANEOUS U+022B4 I \intercal binary intercalate SETUPS U+022B8 Y \veebar binary xor BIBLIOGRAPHY	U+022AD	¥	\nvDash	relation	not true	BUILDING BLOCKS
U+022AF J≤ \nVDash relation negated double vertical bar double right turnstile precedes under relation U+022B0 - ordinary precedes under relation DISPLAYED MATH U+022B1 > ordinary succeeds under relation DISPLAYED MATH U+022B2 - binary normal subgroup of EQUATION LABELS U+022B3 > binary contains as normal subgroup ENUNCIATIONS U+022B4 - ordinary normal subgroup of equal to ILLUSTRATIONS U+022B5 > ordinary contains as normal sub- group or equal to MATH FONTS U+022B6 relation original of MEANINGFUL MATH U+022B7 relation mage of MISCELLANEOUS U+022B8 \multimap relation multimap UNCODE SYMBOLS U+022B7 ordinary hermitian conju- gate matrix SETUPS U+022B8 I \intercal binary intercalate SETUPS U+022BA I \intercal binary intercalate SETUPS <td>U+022AE</td> <td>⊮</td> <td>\nVdash</td> <td>relation</td> <td>does not force</td> <td>KEYWORDS</td>	U+022AE	⊮	\nVdash	relation	does not force	KEYWORDS
U+022B0 ⊰ ordinary precedes under relation U+022B1 ⊱ ordinary succeeds under relation DISPLAYED MATH U+022B2 ⊲ binary normal subgroup of EQUATION LABELS U+022B3 ▷ binary contains as nor- mal subgroup ENUNCIATIONS U+022B4 ⊴ ordinary normal subgroup of or equal to ILLUSTRATIONS U+022B5 ⊵ ordinary contains as normal sub- group or equal to MATH FONTS U+022B6 ↔ relation original of MEANINGFUL MATH U+022B6 ↔ relation mage of MISCELLANEOUS U+022B7 ↔ ordinary hermitian conju- gate matrix UNICODE SYMBOLS U+022B4 I \intercal binary intercalate SETUPS U+022B4 I \intercal binary xor BIBLIOGRAPHY	U+022AF	¥⊧	\nVDash	relation	negated double vertical	KETWORDS
U+022B1 ≽ ordinary succeeds under relation DISPLAYED MATH U+022B2 ⊲ binary normal subgroup of EQUATION LABELS U+022B3 ▷ binary contains as nor- mal subgroup U+022B4 ⊴ ordinary normal subgroup of or ENUNCIATIONS U+022B5 ⊵ ordinary ordinary contains as normal subgroup of or ILLUSTRATIONS U+022B6 ⊶ relation ordinary contains as normal subgroup of or math Fonts U+022B6 ↔ relation ordinary contains as normal sub- Math Fonts U+022B7 ↔ relation mage of Miscellaneous Miscellaneous U+022B8 → \multimap relation multimap Unicode symbols U+022B4 I \intercal binary intercalate SETUPS U+022BA I \intercal binary intercalate SETUPS U+022B8 ⊻ \veebar binary xor BibliogRaphy					bar double right turnstile	INLINE MATH
0+022B1 > ordinary succeeds under relation 0+022B2 ⊲ binary normal subgroup of EQUATION LABELS 0+022B3 > binary contains as normal subgroup of or equal to ILLUSTRATIONS 0+022B4 ⊴ ordinary normal subgroup of or equal to ILLUSTRATIONS 0+022B5 ≥ ordinary contains as normal sub-group of or equal to ILLUSTRATIONS 0+022B6 ⊶ relation original of MEANINGFUL MATH 0+022B7 ⊷ relation image of MISCELLANEOUS 0+022B9 ⊹ ordinary hermitian conju-gate matrix UNICODE SYMBOLS 0+022BA T \intercal binary intercalate SETUPS	U+022B0	r		ordinary	precedes under relation	
U+022B3 ▷ binary contains as normal subgroup ENUNCIATIONS U+022B4 △ ordinary normal subgroup of or equal to ILLUSTRATIONS U+022B5 ▷ ordinary contains as normal sub-group or equal to MATH FONTS U+022B6 ⊶ relation original of MEANINGFUL MATH U+022B7 ⊷ relation image of MISCELLANEOUS U+022B8 ⊸ \multimap relation multimap U+022BA I \intercal binary intercalate SETUPS U+022BA Y \veebar binary xor BIBLIOGRAPHY	U+022B1	۶		ordinary	succeeds under relation	DISPLAYED MATH
U+022B3 ▷ binary contains as nor-mal subgroup ENUNCIATIONS U+022B4 ≤ ordinary normal subgroup of or equal to ILLUSTRATIONS U+022B5 ▷ ordinary contains as normal sub-group or equal to MATH FONTS U+022B6 ↔ relation original of MEANINGFUL MATH U+022B7 ↔ relation image of MISCELLANEOUS U+022B8 ↔ \multimap relation multimap U+022B4 I \intercal binary intercalate SETUPS U+022B8 ⊻ ∨eebar binary xor BIBLIOGRAPHY	U+022B2	\triangleleft		binary	normal subgroup of	
U+022B4 ≤ ordinary normal subgroup of or equal to ILLUSTRATIONS U+022B5 ≥ ordinary contains as normal sub-group or equal to MATH FONTS U+022B6 ↔ relation original of MEANINGFUL MATH U+022B7 ↔ relation image of MISCELLANEOUS U+022B8 → \multimap relation multimap U+022B9 ÷ ordinary hermitian conju-gate matrix UNICODE SYMBOLS U+022BA I \intercal binary intercalate SETUPS U+022B8 ½ \veebar binary xor BIBLIOGRAPHY	U+022B3	⊳		binary	contains as nor-	
U+022B5 ⊵ ordinary equal to ILLUSTRATIONS U+022B6 ↔ ordinary contains as normal sub- group or equal to MATH FONTS U+022B6 ↔ relation original of MEANINGFUL MATH U+022B7 ↔ relation image of MISCELLANEOUS U+022B8 ↔ \multimap relation multimap U+022B9 ⊹ ordinary hermitian conju- gate matrix UNICODE SYMBOLS U+022BA Ţ \intercal binary intercalate SETUPS U+022BB ⊻ \veebar binary xor BIBLIOGRAPHY					mal subgroup	ENUNCIATIONS
U+022B5 ≥ ordinary contains as normal sub- group or equal to MATH FONTS U+022B6 ⊶ relation original of MEANINGFUL MATH U+022B7 ⊷ relation image of MISCELLANEOUS U+022B8 ⊸ \multimap relation multimap U+022B9 ⊹ ordinary hermitian conju- gate matrix UNICODE SYMBOLS U+022BA Ţ \intercal binary intercalate SETUPS U+022BB ✓ \veebar binary xor BIBLIOGRAPHY	U+022B4	⊴		ordinary	normal subgroup of or	
U+022B6 → relation original of MAIN FONTS U+022B7 → relation original of MEANINGFUL MATH U+022B7 → relation image of MISCELLANEOUS U+022B8 → \multimap relation multimap U+022B9 → ordinary hermitian conju- gate matrix UNICODE SYMBOLS U+022BA T \intercal binary intercalate SETUPS U+022BB ✓ \veebar binary xor BIBLIOGRAPHY					equal to	ILLUSTRATIONS
U+022B6 ⊶ relation original of MEANINGFUL MATH U+022B7 ⊷ relation image of MISCELLANEOUS U+022B8 ⊸ \multimap relation multimap U+022B9 ⊹ ordinary hermitian conju- gate matrix UNICODE SYMBOLS U+022BA T \intercal binary intercalate SETUPS U+022BB ⊻ \veebar binary xor BIBLIOGRAPHY	U+022B5	⊵		ordinary	contains as normal sub-	MATH FONTS
U+022B7 ⊷ relation image of U+022B8 ~ \multimap relation multimap U+022B9 ⊹ ordinary hermitian conju- gate matrix UNICODE SYMBOLS U+022BA T \intercal binary intercalate SETUPS U+022BB ✓ \veebar binary xor BIBLIOGRAPHY					group or equal to	
U+022B8 → \multimap relation multimap U+022B9 + ordinary hermitian conju- U+022BA I \intercal binary intercalate SETUPS U+022BB ⊻ \veebar binary xor BIBLIOGRAPHY	U+022B6	⊶		relation	original of	MEANINGFUL MATH
U+022B8 → \multimap relation multimap U+022B9 + ordinary hermitian conjugate matrix U+022BA T \intercal binary intercalate SETUPS U+022BB V \veebar binary xor BIBLIOGRAPHY	U+022B7	●0		relation	image of	
U+022BA T \intercal binary intercalate SETUPS U+022BB ⊻ \veebar binary xor BIBLIOGRAPHY	U+022B8	-0	\multimap	relation	multimap	MISCELLANEOUS
U+022BAT\intercalbinaryintercalateSETUPSU+022BB⊻\veebarbinaryxorBIBLIOGRAPHY	U+022B9	÷		ordinary	hermitian conju-	UNICODE SYMBOLS
U+022BB V \veebar binary xor					gate matrix	
BIBLIOGRAPHY	U+022BA	T	\intercal	binary	intercalate	SETUPS
U+022BC ⊼ \barwedge binary nand	U+022BB	$\underline{\vee}$	\veebar	binary	xor	
	U+022BC	$\overline{\wedge}$	\barwedge	binary	nand	BIBLIOGRAPHT

U+022BD	$\overline{\nabla}$		ordinary	nor	INTRODUCTION
U+022BE	F		ordinary	right angle with arc	GETTING STARTED
U+022BF	Δ		ordinary	right triangle	
U+022C0	$\overline{\wedge}$	\bigwedge	operator	n-ary logical and	BUILDING BLOCKS
U+022C1	V	\bigvee	operator	n-ary logical or	KEYWORDS
U+022C2	\bigcap	\bigcap	operator	n-ary intersection	
U+022C3	U	\bigcup	operator	n-ary union	INLINE MATH
U+022C4	\$	\diamond	binary	diamond operator	
U+022C5	•		binary	dot operator	DISPLAYED MATH
		\cdot	binary		EQUATION LABELS
		\cdotp	punctuation		
		\scalarproduct	binary		ENUNCIATIONS
U+022C6	\star	\star	binary	star operator	
U+022C7	*	\divideontimes	binary	division times	ILLUSTRATIONS
U+022C8	\bowtie	\Join	relation	bowtie	MATH FONTS
		\bowtie	relation		
U+022C9	\ltimes	\ltimes	binary	left normal factor semidi-	MEANINGFUL MATH
U+022CA	×	\rtimes	binary	rect product right normal factor semi-	MISCELLANEOUS
UTUZZCA	N	(1 (111162)	omary	direct product	
U+022CB	Х	\leftthreetimes	binary	left semidirect product	
U+022CC	~	\rightthreetimes	binary	right semidirect product	SETUPS
U+022CD	\sim		ordinary	reversed tilde equals	
	γ	\curlyvee	binary	curly logical or	BIBLIOGRAPHY
		-	-		

U+022CF	٨	\curlywedge	binary	curly logical and	INTRODUCTION
U+022D0	e	\Subset	relation	double subset	GETTING STARTED
U+022D1	∋	\Supset	relation	double superset	
U+022D2	⋒	\Cap	binary	double intersection	BUILDING BLOCKS
		\doublecap	binary		
U+022D3	U	\Cup	binary	double union	KEYWORDS
		\doublecup	binary		INLINE MATH
U+022D4	Ψ	\pitchfork	relation	pitchfork	
U+022D5	#		ordinary	equal and parallel to	DISPLAYED MATH
U+022D6	<	\lessdot	binary	less-than with dot	EQUATION LABELS
U+022D7	≽	\gtrdot	binary	greater-than with dot	
U+022D8	≪	\111	relation	very much less-than	ENUNCIATIONS
		\llless	relation		
U+022D9	>>>	\ggg	relation	very much greater-than	ILLUSTRATIONS
		\gggtr	relation		MATH FONTS
U+022DA	۲I	\lesseqgtr	relation	less-than equal to	
				or greater-than	MEANINGFUL MATH
U+022DB	N۲	\gtreqless	relation	greater-than equal to or	
				less-than	MISCELLANEOUS
U+022DC	<	\eqless	relation	equal to or less-than	UNICODE SYMBOLS
U+022DD	⋝	\eqgtr	relation	equal to or greater-than	
U+022DE	⋞	\curlyeqprec	relation	equal to or precedes	SETUPS
U+022DF	≽	\curlyeqsucc	relation	equal to or succeeds	BIBLIOGRAPHY
U+022E0	≰	\npreccurlyeq	relation	does not precede or equal	

UNICODE SYMBOLS » MATHEMATICAL OPERATORS

U+022E1	≱	\nsucccurlyeq	relation	does not succeed or equal	INTRODUCTION
U+022E2	¥	\nsqsubseteq	relation	not square image of or	GETTING STARTED
U+022E3	⊉	\nsqsupseteq	relation	equal to not square original of or	BUILDING BLOCKS
U+022E4	Ţ	\sqsubsetneq	relation	equal to square image of or not	KEYWORDS
				equal to	INLINE MATH
U+022E5	\downarrow	\sqsupsetneq	relation	square original of or not equal to	DISPLAYED MATH
U+022E6	\$	\lnsim	relation	less-than but not equiva- lent to	EQUATION LABELS
U+022E7	>~	\gnsim	relation	greater-than but not	ENUNCIATIONS
U+022E8	}	\precnsim	relation	equivalent to precedes but not equiva-	ILLUSTRATIONS
U+022E9	۲	\succnsim	relation	lent to succeeds but not equiva-	MATH FONTS
	γ			lent to	MEANINGFUL MATH
U+022EA	⋪	\ntriangleright	relation	not normal subgroup of	MISCELLANEOUS
U+022EB	⋫	\ntriangleleft	relation	does not contain as nor- mal subgroup	
U+022EC	⋬	\ntrianglelefteq	relation	not normal subgroup of	SETUPS
U+022ED	⋭	\ntrianglerighteq	relation	or equal to does not contain as nor- mal subgroup or equal	BIBLIOGRAPHY

U+022EE	÷	\vdots	ellipsis	vertical ellipsis	INTRODUCTION
U+022EF	•••	\cdots	ellipsis	midline horizon-	GETTING STARTED
				tal ellipsis	
U+022F0	.÷	\udots	ellipsis	up right diagonal ellipsis	BUILDING BLOCKS
U+022F1	·.	\ddots	ellipsis	down right diago-	KEYWORDS
				nal ellipsis	KETWORDS
U+022F2	€		ordinary	element of with long hor-	INLINE MATH
				izontal stroke	
U+022F3	Ð		ordinary	element of with vertical	DISPLAYED MATH
				bar at end of horizontal	EQUATION LABELS
				stroke	
U+022F4	e		ordinary	small element of with	ENUNCIATIONS
				vertical bar at end of hor-	
				izontal stroke	ILLUSTRATIONS
U+022F5	Ė		ordinary	element of with	MATH FONTS
				dot above	
U+022F6	Ē		ordinary	element of with overbar	MEANINGFUL MATH
U+022F7	Ē		ordinary	small element of with	MISCELLANEOUS
				overbar	MISCELLANEOUS
U+022F8	⋸		ordinary	element of with underbar	UNICODE SYMBOLS
U+022F9	€		ordinary	element of with two hori-	
				zontal strokes	SETUPS
U+022FA	€		ordinary	contains with long hori-	BIBLIOGRAPHY
				zontal stroke	DIDLIUGRAPHT

U+022FB ∋	ordinary	contains with vertical	INTRODUCTION
		bar at end of horizontal	GETTING STARTED
		stroke	
U+022FC ∍	ordinary	small contains with verti-	BUILDING BLOCKS
		cal bar at end of horizon-	
		tal stroke	KEYWORDS
U+022FD ∋	ordinary	contains with overbar	
U+022FE ∋	ordinary	small contains	INLINE MATH
0,02212 9	oraniary	with overbar	DISPLAYED MATH
U+022FF ⊣	ordinary	z notation bag member-	
	orumary	ship	EQUATION LABELS

12.5 Miscellaneous Mathematical Symbols-A

11.02700		andinama	three dimensional angle	ILLUSTRATIONS
U+027C0	K	ordinary	three dimensional angle	
U+027C1		ordinary	white triangle containing small white triangle	MATH FONTS
U+027C2	\perp	ordinary	perpendicular	
U+027C3	0	ordinary	open subset	MEANINGFUL MATH
U+027C4	୭	ordinary	open superset	MISCELLANEOUS
U+027C5	2	ordinary	left s-shaped bag delimiter	mocellatioos
U+027C6	S	ordinary	right s-shaped bag delimiter	UNICODE SYMBOLS
U+027C7	۷	ordinary	or with dot inside	
U+027C8	١C	ordinary	reverse solidus preceding subset	SETUPS
U+027C9	\supset	ordinary	superset preceding solidus	
U+027CB	/	ordinary	mathematical rising diagonal	BIBLIOGRAPHY
		•		

416

ENUNCIATIONS

U+027CC	Σ	ordinary	long division	INTRODUCTION
U+027CD	, \	5	mathematical falling diagonal	GETTING STARTED
U+027D0	\diamond	•	white diamond with centred dot	
U+027D1	Â	ordinary	and with dot	BUILDING BLOCKS
U+027D2	Ψ	ordinary	element of opening upwards	
U+027D3	Ŀ	ordinary	lower right corner with dot	KEYWORDS
U+027D4	Ŀ	ordinary	upper left corner with dot	INLINE MATH
U+027D5	\bowtie	ordinary	left outer join	
U+027D6	\bowtie	ordinary	right outer join	DISPLAYED MATH
U+027D7	X	ordinary	full outer join	EQUATION LABELS
U+027D8	\perp	ordinary	large up tack	
U+027D9	Т	ordinary	large down tack	ENUNCIATIONS
U+027DA	≓⊨	ordinary	left and right double turnstile	
U+027DB	- -	ordinary	left and right tack	ILLUSTRATIONS
U+027DC	∽	ordinary	left multimap	MATH FONTS
U+027DD	└──	ordinary	long right tack	
U+027DE	<u> </u>	ordinary	long left tack	MEANINGFUL MATH
U+027DF	l	ordinary	up tack with circle above	
U+027E0	\Diamond	ordinary	lozenge divided by horizontal rule	MISCELLANEOUS
U+027E1	\diamond	ordinary	white concave-sided diamond	UNICODE SYMBOLS
U+027E2	\diamond	ordinary	white concave-sided diamond with leftwards tick	
U+027E3	\$	ordinary	white concave-sided diamond with rightwards	SETUPS
			tick	BIBLIOGRAPHY
U+027E4		ordinary	white square with leftwards tick	

U+027E5	┏		ordinary
U+027E6	II.	\llbracket	open
U+027E7]	\rrbracket	close
U+027E8	<	\langle	open
U+027E9	\rangle	\rangle	close
U+027EA	«	∖llangle	open
U+027EB	»	\rrangle	close
U+027EC	ĺ		ordinary
U+027ED	D		ordinary
U+027EE	(\lgroup	open
U+027EF)	\ rgro up	close

7	white square with rightwards tick
	mathematical left white square bracket
	mathematical right white square bracket
	mathematical left angle bracket
	mathematical right angle bracket
	mathematical left double angle bracket
	mathematical right double angle bracket
7	mathematical left white tortoise shell bracket
7	mathematical right white tortoise shell bracke
	mathematical left flattened parenthesis
	mathematical right flattened parenthesis

12.6 Miscellaneous Mathematical Symbols-B

U+02980		\tripleverticalbar	delimiter	triple vertical bar delimiter	
U+02981	•		ordinary	z notation spot	м
U+02982	8		ordinary	z notation type colon	
U+02983	{		ordinary	left white curly bracket	MEAI
U+02984	}		ordinary	right white curly bracket	MIS
U+02985	(ordinary	left white parenthesis	
U+02986)		ordinary	right white parenthesis	UNIC
U+02987	1		ordinary	z notation left image bracket	
U+02988	D		ordinary	z notation right image bracket	
U+02989	4		ordinary	z notation left binding bracket	BI
U+0298A	Þ		ordinary	z notation right binding bracket	ВП

INTRODUCTION **GETTING STARTED BUILDING BLOCKS KEYWORDS INLINE MATH DISPLAYED MATH EQUATION LABELS ENUNCIATIONS** ILLUSTRATIONS MATH FONTS ANINGFUL MATH ISCELLANEOUS ICODE SYMBOLS SETUPS BIBLIOGRAPHY

U+0298B	Γ		ordinary	left square bracket with underbar	
U+0298C]		ordinary	right square bracket with underbar	GETTING STARTED
U+0298D	[ordinary	left square bracket with tick in	
	-			top corner	BUILDING BLOCKS
U+0298E	3		ordinary	right square bracket with tick in bottom corner	KEYWORDS
U+0298F	Ę		ordinary	left square bracket with tick in bottom	INLINE MATH
				corner	
U+02990]		ordinary	right square bracket with tick in top	DISPLAYED MATH
				corner	EQUATION LABELS
U+02991	<		ordinary	left angle bracket with dot	
U+02992	ò		ordinary	right angle bracket with dot	ENUNCIATIONS
U+02993	\$		ordinary	left arc less-than bracket	
U+02994	≯		ordinary	right arc greater-than bracket	ILLUSTRATIONS
U+02995	\$€		ordinary	double left arc greater-than bracket	MATH FONTS
U+02996	X		ordinary	double right arc less-than bracket	
U+02997	(\linterval	open	left black tortoise shell bracket	MEANINGFUL MATH
		\llointerval	open		
		\rlointerval	close		MISCELLANEOUS
		\rointerval	close		UNICODE SYMBOLS
U+02998)	\lointerval	open	right black tortoise shell bracket	
		\lrointerval	open		SETUPS
		\rinterval	close		BIBLIOGRAPHY
		\rrointerval	close		

				INTRODUCTION
U+02999		ordinary	dotted fence	
U+0299A	1	ordinary	vertical zigzag line	GETTING STARTED
U+0299B	A	ordinary	measured angle opening left	
U+0299C	Ь.	ordinary	right angle variant with square	BUILDING BLOCKS
U+0299D	<u>b</u>	ordinary	measured right angle with dot	KEYWORDS
U+0299E	<u>A</u> s	ordinary	angle with s inside	KETWORDS
U+0299F	2	ordinary	acute angle	INLINE MATH
U+029A0	⊳	ordinary	spherical angle opening left	
U+029A1	∀	ordinary	spherical angle opening up	DISPLAYED MATH
U+029A2	7	ordinary	turned angle	EQUATION LABELS
U+029A3	$\mathbf{\Sigma}$	ordinary	reversed angle	
U+029A4	∠	ordinary	angle with underbar	ENUNCIATIONS
U+029A5	\geq	ordinary	reversed angle with underbar	
U+029A6	\sim	ordinary	oblique angle opening up	ILLUSTRATIONS
U+029A7	<i>_</i>	ordinary	oblique angle opening down	MATH FONTS
U+029A8	Ă	ordinary	measured angle with open arm ending	
			in arrow pointing up and right	MEANINGFUL MATH
U+029A9	Ā	ordinary	measured angle with open arm ending	
			in arrow pointing up and left	MISCELLANEOUS
U+029AA	Z	ordinary	measured angle with open arm ending	UNICODE SYMBOLS
			in arrow pointing down and right	
U+029AB	¥	ordinary	measured angle with open arm ending	SETUPS
			in arrow pointing down and left	
U+029AC	Þ	ordinary	measured angle with open arm ending	BIBLIOGRAPHY

U+029AD

U+029AE

U+029AF

U+029B0 U+029B1 U+029B3 U+029B3 U+029B4 U+029B5 U+029B6 U+029B7 U+029B8 U+029B9 U+029B9

U+029BB U+029BC

U+029BD U+029BE

		in arrow pointing right and up	INTRODUCTION
ہ م 0	ordinary	measured angle with open arm ending	GETTING STARTED
٥ کې	ordinary	in arrow pointing left and up measured angle with open arm ending	BUILDING BLOCKS
<u>م</u> 0	ordinary	in arrow pointing right and down measured angle with open arm ending	KEYWORDS
A 0	numary	in arrow pointing left and down	INLINE MATH
Ø 0	ordinary	reversed empty set	
∅ o	ordinary	empty set with overbar	DISPLAYED MATH
Ø 0 Ø 0 Ø 0 Ø 0 Ø 0	ordinary	empty set with small circle above	EQUATION LABELS
ø o	ordinary	empty set with right arrow above	
ŏ o	ordinary	empty set with left arrow above	ENUNCIATIONS
⊖ o	ordinary	circle with horizontal bar	
Φ ο	ordinary	circled vertical bar	ILLUSTRATIONS
0 0	ordinary	circled parallel	MATH FONTS
O 0	ordinary	circled reverse solidus	
٠ ٥	ordinary	circled perpendicular	MEANINGFUL MATH
θ ο	ordinary	circle divided by horizontal bar and top	MISCELLANEOUS
		half divided by vertical bar	
	ordinary	circle with superimposed x	UNICODE SYMBOLS
Ø 0	ordinary	circled anticlockwise-rotated division	SETUPS
*		sign	SETOPS
+	ordinary	up arrow through circle	BIBLIOGRAPHY
© 0	ordinary	circled white bullet	

U+029BF	۲	ordinary	circled bullet	
U+029C0	\otimes	ordinary	circled less-than	GETTING STARTED
U+029C1	\otimes	ordinary	circled greater-than	
U+029C2	\bigcirc	ordinary	circle with small circle to the right	BUILDING BLOCKS
U+029C3	O=	ordinary	circle with two horizontal strokes to	KEYWORDS
			the right	KETWORDS
U+029C4		ordinary	squared rising diagonal slash	INLINE MATH
U+029C5		ordinary	squared falling diagonal slash	
U+029C6	*	ordinary	squared asterisk	DISPLAYED MATH
U+029C7	0	ordinary	squared small circle	EQUATION LABELS
U+029C8		ordinary	squared square	EQUATION LABELS
U+029C9	<u>ዋ</u>	ordinary	two joined squares	ENUNCIATIONS
U+029CA	$\dot{\Delta}$	ordinary	triangle with dot above	
U+029CB	Δ	ordinary	triangle with underbar	ILLUSTRATIONS
U+029CC	<u>s</u>	ordinary	s in triangle	MATH FONTS
U+029CD	\triangle	ordinary	triangle with serifs at bottom	
U+029CE	⊵	ordinary	right triangle above left triangle	MEANINGFUL MATH
U+029CF	⊲I	ordinary	left triangle beside vertical bar	MISCELLANEOUS
U+029D0		ordinary	vertical bar beside right triangle	MISCELLANEOUS
U+029D1	\bowtie	ordinary	bowtie with left half black	UNICODE SYMBOLS
U+029D2	×	ordinary	bowtie with right half black	
U+029D3	H	ordinary	black bowtie	SETUPS
U+029D4	ĸ	ordinary	times with left half black	BIBLIOGRAPHY
U+029D5	×	ordinary	times with right half black	

U+029D6	X	ordinary	white hourglass	INTRODUCTION
	Ž	ordinary	black hourglass	GETTING STARTED
U+029D8	-	ordinary	left wiggly fence	
U+029D9	* {	ordinary	right wiggly fence	BUILDING BLOCKS
U+029DA	*	ordinary	left double wiggly fence	
U+029DB	#	ordinary	right double wiggly fence	KEYWORDS
U+029DC	\sim	ordinary	incomplete infinity	INLINE MATH
U+029DD	\otimes	ordinary	tie over infinity	
U+029DE	ф	ordinary	infinity negated with vertical bar	DISPLAYED MATH
U+029DF	oo	ordinary	double-ended multimap	EQUATION LABELS
U+029E0		ordinary	square with contoured outline	
U+029E1	⊿	ordinary	increases as	ENUNCIATIONS
U+029E2	ш	ordinary	shuffle product	
U+029E3	#	ordinary	equals sign and slanted parallel	ILLUSTRATIONS
U+029E4	<i></i> #	ordinary	equals sign and slanted parallel with	MATH FONTS
			tilde above	
U+029E5	#	ordinary	identical to and slanted parallel	MEANINGFUL MATH
U+029E6	Ħ	ordinary	gleich stark	
U+029E7	+	ordinary	thermodynamic	MISCELLANEOUS
U+029E8	$\mathbf{\nabla}$	ordinary	down-pointing triangle with left half	UNICODE SYMBOLS
			black	
U+029E9	$\mathbf{\Lambda}$	ordinary	down-pointing triangle with right half	SETUPS
			black	BIBLIOGRAPHY
U+029EA	\$	ordinary	black diamond with down arrow	

424

U+029EB	•	ordinary	black lozenge	INTRODUCTION
U+029EC	Ŷ	ordinary	white circle with down arrow	GETTING STARTED
U+029ED	•	ordinary	black circle with down arrow	
U+029EE	₫	ordinary	error-barred white square	BUILDING BLOCKS
U+029EF	Ĭ	ordinary	error-barred black square	
U+029F0	$\overline{\Delta}$	ordinary	error-barred white diamond	KEYWORDS
U+029F1	Ŧ	ordinary	error-barred black diamond	INLINE MATH
U+029F2	δ	ordinary	error-barred white circle	
U+029F3	₽	ordinary	error-barred black circle	DISPLAYED MATH
U+029F4	\Rightarrow	ordinary	rule-delayed	
U+029F5	\	ordinary	reverse solidus operator	EQUATION LABELS
U+029F6	7	ordinary	solidus with overbar	ENUNCIATIONS
U+029F7	f	ordinary	reverse solidus with horizontal stroke	
U+029F8	/	ordinary	big solidus	ILLUSTRATIONS
U+029F9	Ì	ordinary	big reverse solidus	
U+029FA	+	ordinary	double plus	MATH FONTS
U+029FB	₩	ordinary	triple plus	MEANINGFUL MATH
U+029FC	<	ordinary	left-pointing curved angle bracket	
U+029FD	\rangle	ordinary	right-pointing curved angle bracket	MISCELLANEOUS
U+029FE	+	ordinary	tiny	
U+029FF	-	ordinary	miny	UNICODE SYMBOLS

SETUPS

BIBLIOGRAPHY

12.7 Supplemental Mathematical Operators

U+02A00	\odot	\bigodot
U+02A01	\oplus	\bigoplus
U+02A02	\otimes	\bigotimes
U+02A03	Ū	\bigudot
U+02A04	Η	\biguplus
U+02A05	Π	\bigsqcap
U+02A06	\Box	\bigsqcup
U+02A07	\wedge	
U+02A08	Ŵ	
U+02A09	Х	\bigtimes
U+02A0A	D	
U+02A0B	Ţ	
U+02A0C	ĴĴĴĴ	
		\iiiint
		\iiiintop
U+02A0D	f	
U+02A0E	£	
U+02A0F	f	
U+02A10	¢	
U+02A11	£	
U+02A12	كر	

n-ary circled dot operator operator n-ary circled plus operator operator operator n-ary circled times operator operator n-ary union operator with dot operator n-ary union operator with plus operator n-ary square intersection operator n-ary square union operator operator ordinary two logical and operator ordinary two logical or operator operator n-ary times operator ordinary modulo two sum summation with integral ordinary integral quadruple integral operator integral ordinary

ordinary finite part integral ordinary integral with double stroke ordinary integral average with slash ordinary circulation function ordinary anticlockwise integration ordinary line integration with rectangular path around pole

GETTING STARTED
BUILDING BLOCKS
KEYWORDS
INLINE MATH
DISPLAYED MATH
EQUATION LABELS
ENUNCIATIONS
ILLUSTRATIONS
MATH FONTS
MEANINGFUL MATH
MISCELLANEOUS
UNICODE SYMBOLS
SETUPS
BIBLIOGRAPHY

U+02A13	Ş	ordinary	line integration with semicircular path	
	U Contraction of the second se	2	around pole	GETTING STARTED
U+02A14	<u>چ</u>	ordinary	line integration not including the pole	
U+02A15	ġ.	ordinary	integral around a point operator	BUILDING BLOCKS
U+02A16	р́	ordinary	quaternion integral operator	
U+02A17	Ф	ordinary	integral with leftwards arrow with hook	KEYWORDS
U+02A18	×	ordinary	0	INLINE MATH
U+02A19	ர	ordinary	0	
U+02A1A	ý	ordinary	-	DISPLAYED MATH
U+02A1B	Ī	ordinary	integral with overbar	
U+02A1C	ſ	-	integral with underbar	EQUATION LABELS
U+02A1D	Ň	ordinary	e	ENUNCIATIONS
U+02A1E	\triangleleft	ordinary		
U+02A1F	9	ordinary	z notation schema composition	ILLUSTRATIONS
U+02A20	≫	ordinary	z notation schema piping	MATH FONTS
U+02A21	1	ordinary	z notation schema projection	
U+02A22	÷	ordinary	plus sign with small circle above	MEANINGFUL MATH
U+02A23	Ŷ	ordinary	plus sign with circumflex accent above	
U+02A24	ĩ	ordinary	plus sign with tilde above	MISCELLANEOUS
U+02A25	÷	ordinary	plus sign with dot below	UNICODE SYMBOLS
U+02A26	±	ordinary	plus sign with tilde below	
U+02A27	+	ordinary	plus sign with subscript two	SETUPS
U+02A28	÷	ordinary	plus sign with black triangle	
U+02A29	<u>,</u>	ordinary	minus sign with comma above	BIBLIOGRAPHY

U+02A2A	÷		ordinary	minus sign with dot below	
U+02A2B	÷		ordinary	minus sign with falling dots	GETTING STARTED
U+02A2C	÷		ordinary	minus sign with rising dots	
U+02A2D	¢		ordinary	plus sign in left half circle	BUILDING BLOCKS
U+02A2E	Ð		ordinary	plus sign in right half circle	KEYWORDS
U+02A2F	×		ordinary	vector or cross product	KETWORDS
U+02A30	×		ordinary	multiplication sign with dot above	INLINE MATH
U+02A31	\mathbf{X}		ordinary	multiplication sign with underbar	
U+02A32	X		ordinary	semidirect product with bottom closed	DISPLAYED MATH
U+02A33	*		ordinary	smash product	EQUATION LABELS
U+02A34	8		ordinary	multiplication sign in left half circle	
U+02A35	×)		ordinary	multiplication sign in right half circle	ENUNCIATIONS
U+02A36	Ô		ordinary	circled multiplication sign with circum-	
				flex accent	ILLUSTRATIONS
U+02A37	\otimes		ordinary	multiplication sign in double circle	MATH FONTS
U+02A38	÷		ordinary	circled division sign	
U+02A39	A		ordinary	plus sign in triangle	MEANINGFUL MATH
U+02A3A	A		ordinary	minus sign in triangle	
U+02A3B	\land		ordinary	multiplication sign in triangle	MISCELLANEOUS
U+02A3C	_		ordinary	interior product	UNICODE SYMBOLS
U+02A3D	L		ordinary	righthand interior product	
U+02A3E	° 9		ordinary	z notation relational composition	SETUPS
U+02A3F	Ш	\amalg	binary	amalgamation or coproduct	BIBLIOGRAPHY
U+02A40	Ω		ordinary	intersection with dot	

U+02A41	A	ordinary	union with minus sign	
U+02A42	Ū	ordinary	union with overbar	GETTING STARTED
U+02A43	Ā	ordinary	intersection with overbar	
U+02A44	A	ordinary	intersection with logical and	BUILDING BLOCKS
U+02A45	⋓	ordinary	union with logical or	
U+02A46		ordinary	union above intersection	KEYWORDS
U+02A47	Û	ordinary	intersection above union	INLINE MATH
U+02A48	Ŭ	ordinary	union above bar above intersection	
U+02A49	Ö	ordinary	intersection above bar above union	DISPLAYED MATH
U+02A4A	W	ordinary	union beside and joined with union	EQUATION LABELS
U+02A4B	m	ordinary	intersection beside and joined	
			with intersection	ENUNCIATIONS
U+02A4C	σ	ordinary	closed union with serifs	ILLUSTRATIONS
U+02A4D	Ω	ordinary	closed intersection with serifs	
U+02A4E	Ш	ordinary	double square intersection	MATH FONTS
U+02A4F	Ш	ordinary	double square union	
U+02A50	膨	ordinary	closed union with serifs and smash	MEANINGFUL MATH
			product	MISCELLANEOUS
U+02A51	Ż	ordinary	logical and with dot above	MISCELLANEOUS
U+02A52	Ý	ordinary	logical or with dot above	UNICODE SYMBOLS
U+02A53	۸	ordinary	double logical and	
U+02A54	♥	ordinary	double logical or	SETUPS
U+02A55	ҝ	ordinary	two intersecting logical and	BIBLIOGRAPHY
U+02A56	₩	ordinary	two intersecting logical or	

U+02A57	V	ordinary	sloping large or	
U+02A58	Л	ordinary	sloping large and	GETTING STARTED
U+02A59	×	ordinary	logical or overlapping logical and	
U+02A5A	٨	ordinary	logical and with middle stem	BUILDING BLOCKS
U+02A5B	Ψ	ordinary	logical or with middle stem	KEYWORDS
U+02A5C	A	ordinary	logical and with horizontal dash	KEYWORDS
U+02A5D	\forall	ordinary	logical or with horizontal dash	INLINE MATH
U+02A5E	⊼	ordinary	logical and with double overbar	
U+02A5F	Δ	ordinary	logical and with underbar	DISPLAYED MATH
U+02A60	≙	ordinary	logical and with double underbar	EQUATION LABELS
U+02A61	<u>v</u>	ordinary	small vee with underbar	
U+02A62	₹	ordinary	logical or with double overbar	ENUNCIATIONS
U+02A63	⊻	ordinary	logical or with double underbar	
U+02A64	\triangleleft	ordinary	z notation domain antirestriction	ILLUSTRATIONS
U+02A65	\triangleright	ordinary	z notation range antirestriction	MATH FONTS
U+02A66	÷	ordinary	equals sign with dot below	
U+02A67	≐	ordinary	identical with dot above	MEANINGFUL MATH
U+02A68	#	ordinary	•	MISCELLANEOUS
			stroke	
U+02A69	#	ordinary	1 I	UNICODE SYMBOLS
			stroke	
U+02A6A		ordinary	1	SETUPS
U+02A6B	べ	ordinary	1 6	BIBLIOGRAPHY
U+02A6C	≈	ordinary	similar minus similar	

U+02A6D	≧		ordinary	congruent with dot above	
U+02A6E	*		ordinary	equals with asterisk	GETTING STARTED
U+02A6F	\hat{pprox}		ordinary	almost equal to with circumflex accent	
U+02A70	\approx		ordinary	approximately equal or equal to	BUILDING BLOCKS
U+02A71	∓		ordinary	equals sign above plus sign	KEYWORDS
U+02A72	ŧ		ordinary	plus sign above equals sign	
U+02A73	₹		ordinary	equals sign above tilde operator	INLINE MATH
U+02A74	==	\coloncolonequals	relation	double colon equal	
U+02A75	==	\eqeq	relation	two consecutive equals signs	DISPLAYED MATH
U+02A76	===	\eqeqeq	relation	three consecutive equals signs	EQUATION LABELS
U+02A77			ordinary	equals sign with two dots above and two	
				dots below	ENUNCIATIONS
U+02A78	≣		ordinary	equivalent with four dots above	
U+02A79	<		ordinary	less-than with circle inside	ILLUSTRATIONS
U+02A7A	⊳		ordinary	greater-than with circle inside	MATH FONTS
U+02A7B	~		ordinary	less-than with question mark above	
U+02A7C	$\stackrel{?}{>}$		ordinary	greater-than with question mark above	MEANINGFUL MATH
U+02A7D	≤	\leqslant	relation	less-than or slanted equal to	
U+02A7E	≽	\geqslant	relation	greater-than or slanted equal to	MISCELLANEOUS
U+02A7F	≷		ordinary	less-than or slanted equal to with dot	UNICODE SYMBOLS
				inside	
U+02A80	≽		ordinary	greater-than or slanted equal to with	SETUPS
				dot inside	BIBLIOGRAPHY
U+02A81	₹		ordinary	less-than or slanted equal to with dot	BIBLIOGRAPHY

				above	
U+02A82	≽		ordinary	greater-than or slanted equal to with dot above	GETTING STARTED
U+02A83	Ś		ordinary	less-than or slanted equal to with dot	BUILDING BLOCKS
			1.	above right	KEYWORDS
U+02A84	≽		ordinary	greater-than or slanted equal to with dot	
U+02A85	<	\lessapprox	relation	above left less-than or approximate	INLINE MATH
	8V 8V	\gtrapprox	relation	greater-than or approximate	DISPLAYED MATH
U+02A00	≈ ∽	\lneq	relation	less-than and single-line not equal to	
U+02A88	≁ ≩	\rneq	relation	greater-than and single-line not equal to	EQUATION LABELS
U+02A89	¥ \ #	\lnapprox	relation	less-than and not approximate	ENUNCIATIONS
U+02A8A	$\sim \sim$	\gnapprox	relation	greater-than and not approximate	
U+02A8B	VIIA&V	\lesseqqgtr	relation	less-than above double-line equal above	ILLUSTRATIONS
	-			greater-than	MATH FONTS
U+02A8C	∧II∨	\gtreqqless	relation	greater-than above double-line equal	
				above less-than	MEANINGFUL MATH
U+02A8D	\leq		ordinary	less-than above similar or equal	
U+02A8E	\gtrsim		ordinary	greater-than above similar or equal	MISCELLANEOUS
U+02A8F	NS/		ordinary	less-than above similar above greater-	UNICODE SYMBOLS
				than	
U+02A90	۸۲۷		ordinary	greater-than above similar above less-	SETUPS
	_			than	BIBLIOGRAPHY
U+02A91	≶		ordinary	less-than above greater-than above dou-	

				ble-line equal	INTRODUCTION
U+02A92	≷I		ordinary	greater-than above less-than above dou- ble-line equal	GETTING STARTED
U+02A93	VIII		ordinary	less-than above slanted equal above	BUILDING BLOCKS
U+02A94	ANV		ordinary	greater-than above slanted equal greater-than above slanted equal above	KEYWORDS
	~		2	less-than above slanted equal	INLINE MATH
U+02A95	≷	\eqslantless	relation	slanted equal to or less-than	
U+02A96	≽	\eqslantgtr	relation	slanted equal to or greater-than	DISPLAYED MATH
U+02A97	≷		ordinary	*	EQUATION LABELS
				inside	
U+02A98	≽		ordinary	slanted equal to or greater-than with	ENUNCIATIONS
				dot inside	
U+02A99	₹		ordinary	double-line equal to or less-than	ILLUSTRATIONS
U+02A9A	⋝		ordinary	double-line equal to or greater-than	MATH FONTS
U+02A9B	1		ordinary	double-line slanted equal to or less-than	
U+02A9C	€		ordinary	double-line slanted equal to or greater-	MEANINGFUL MATH
				than	
U+02A9D	\approx		ordinary	similar or less-than	MISCELLANEOUS
U+02A9E	\approx		ordinary	similar or greater-than	UNICODE SYMBOLS
U+02A9F	\cong		ordinary	similar above less-than above equals	
	_		5	sign	SETUPS
U+02AA0	2VII		ordinary	similar above greater-than above equals sign	BIBLIOGRAPHY

U+02AA1	≪		ordinary	double nested less-than	
U+02AA2			ordinary	double nested greater-than	GETTING STARTED
U+02AA3	~		ordinary	double nested less-than with underbar	GETTING STARTED
U+02AA4	×		ordinary	greater-than overlapping less-than	BUILDING BLOCKS
U+02AA5	\times		ordinary	greater-than beside less-than	
U+02AA6	\triangleleft		ordinary	less-than closed by curve	KEYWORDS
U+02AA7	\triangleright		ordinary	greater-than closed by curve	INLINE MATH
U+02AA8	Ą		ordinary	less-than closed by curve above slanted	
				equal	DISPLAYED MATH
U+02AA9	₽		ordinary	greater-than closed by curve above	EQUATION LABELS
				slanted equal	
U+02AAA	←		ordinary	smaller than	ENUNCIATIONS
U+02AAB	>		ordinary	larger than	
U+02AAC	≤		ordinary	smaller than or equal to	ILLUSTRATIONS
U+02AAD	≥		ordinary	larger than or equal to	MATH FONTS
U+02AAE	≙		ordinary	equals sign with bumpy above	
U+02AAF	\leq	\preceq	relation	precedes above single-line equals sign	MEANINGFUL MATH
U+02AB0	≥	\succeq	relation	succeeds above single-line equals sign	
U+02AB1	⋨	\precneq	relation	precedes above single-line not equal to	MISCELLANEOUS
U+02AB2	≽	\succneq	relation	succeeds above single-line not equal to	UNICODE SYMBOLS
U+02AB3	≚	\preceqq	relation	precedes above equals sign	
U+02AB4	≽	\succeqq	relation	succeeds above equals sign	SETUPS
U+02AB5	¥¥	\precneqq	relation	precedes above not equal to	BIBLIOGRAPHY
U+02AB6	≻≠	\succneqq	relation	succeeds above not equal to	

					INTRODUCTION
U+02AB7	¥≋	\precapprox	relation	precedes above almost equal to	INTRODUCTION
U+02AB8	×≈	\succapprox	relation	succeeds above almost equal to	GETTING STARTED
U+02AB9	¥\$`	\precnapprox	relation	precedes above not almost equal to	
U+02ABA	₩	\succnapprox	relation	succeeds above not almost equal to	BUILDING BLOCKS
U+02ABB	≪		ordinary	double precedes	KEYWORDS
U+02ABC	\gg		ordinary	double succeeds	KETWORDS
U+02ABD	c		ordinary	subset with dot	INLINE MATH
U+02ABE	∋		ordinary	superset with dot	
U+02ABF	ç		ordinary	subset with plus sign below	DISPLAYED MATH
U+02AC0	⊋		ordinary	superset with plus sign below	EQUATION LABELS
U+02AC1	č		ordinary	subset with multiplication sign below	EQUATION LABELS
U+02AC2	₹		ordinary	superset with multiplication sign below	ENUNCIATIONS
U+02AC3	ċ		ordinary	subset of or equal to with dot above	
U+02AC4	⊇		ordinary	superset of or equal to with dot above	ILLUSTRATIONS
U+02AC5	⊆	\subseteqq	relation	subset of above equals sign	MATH FONTS
U+02AC6	⊇	\supseteqq	relation	superset of above equals sign	MATTITONTS
U+02AC7	Ę		ordinary	subset of above tilde operator	MEANINGFUL MATH
U+02AC8	≳		ordinary	superset of above tilde operator	
U+02AC9	S		ordinary	subset of above almost equal to	MISCELLANEOUS
U+02ACA	°∩≋		ordinary	superset of above almost equal to	UNICODE SYMBOLS
U+02ACB	⊊	\subsetneqq	relation	subset of above not equal to	
U+02ACC	₽́	\supsetneqq	relation	superset of above not equal to	SETUPS
U+02ACD	<i>–</i>		ordinary	square left open box operator	
U+02ACE			ordinary	square right open box operator	BIBLIOGRAPHY
			2		

U+02ACF	D	ordinary	closed subset	
U+02AD0	D	ordinary	closed superset	GETTING STARTED
U+02AD1	a	ordinary		GETTING STARTED
U+02AD2	_ D	ordinary	*	BUILDING BLOCKS
U+02AD3	5	ordinary	subset above superset	
U+02AD4		ordinary	-	KEYWORDS
U+02AD5		ordinary	subset above subset	INLINE MATH
U+02AD6		ordinary	superset above superset	
U+02AD7	- C	ordinary	superset beside subset	DISPLAYED MATH
U+02AD8	Æ	ordinary	superset beside and joined by dash with	EQUATION LABELS
			subset	
U+02AD9	\mathbb{M}	ordinary	element of opening downwards	ENUNCIATIONS
U+02ADA		ordinary	pitchfork with tee top	
U+02ADB	Μ	ordinary	transversal intersection	ILLUSTRATIONS
U+02ADC	ئلا	ordinary	forking	MATH FONTS
U+02ADD	Ψ	ordinary	nonforking	
U+02ADE	4	ordinary	short left tack	MEANINGFUL MATH
U+02ADF	т	ordinary	short down tack	
U+02AE0	1	ordinary	short up tack	MISCELLANEOUS
U+02AE1	ls	ordinary	perpendicular with s	UNICODE SYMBOLS
U+02AE2	E	ordinary	vertical bar triple right turnstile	
U+02AE3	\dashv	ordinary	double vertical bar left turnstile	SETUPS
U+02AE4	╡	ordinary	vertical bar double left turnstile	
U+02AE5	╡	ordinary	double vertical bar double left turnstile	BIBLIOGRAPHY

U+02AE6	⊬	ordinary	long dash from left member of double	
		2	vertical	GETTING STARTED
U+02AE7		ordinary	short down tack with overbar	
U+02AE8	≟	ordinary	short up tack with underbar	BUILDING BLOCKS
U+02AE9	+	ordinary	short up tack above short down tack	
U+02AEA	π	ordinary	double down tack	KEYWORDS
U+02AEB	Ш	ordinary	double up tack	INLINE MATH
U+02AEC	7	ordinary	double stroke not sign	
U+02AED	F	ordinary	reversed double stroke not sign	DISPLAYED MATH
U+02AEE	ł	ordinary	does not divide with reversed negation	EQUATION LABELS
			slash	
U+02AEF	Ŷ	ordinary	vertical line with circle above	ENUNCIATIONS
U+02AF0	Y	ordinary	vertical line with circle below	
U+02AF1	ſ	ordinary	down tack with circle below	ILLUSTRATIONS
U+02AF2	#	ordinary	parallel with horizontal stroke	MATH FONTS
U+02AF3	₩	ordinary	parallel with tilde operator	
U+02AF4	III	ordinary	triple vertical bar binary relation	MEANINGFUL MATH
U+02AF5	₩	ordinary	triple vertical bar with horizontal stroke	
U+02AF6	:	ordinary	triple colon operator	MISCELLANEOUS
U+02AF7	≪	ordinary	triple nested less-than	UNICODE SYMBOLS
U+02AF8	≫	ordinary	triple nested greater-than	
U+02AF9		ordinary	double-line slanted less-than or equal to	SETUPS
U+02AFA	}	ordinary	e	BIBLIOGRAPHY
			equal to	

U+02AFB	///	ordinary	triple solidus binary relation	INTRODUCTION
U+02AFC	m	2	large triple vertical bar operator	GETTING STARTED
U+02AFD	//	ordinary	double solidus operator	
U+02AFE	0	ordinary	white vertical bar	BUILDING BLOCKS
U+02AFF	Π	ordinary	n-ary white vertical bar	
	-		-	KEYWORDS

12.8 Miscellaneous Symbols and Arrows

U+02B12		ordinary	square with top half black
U+02B13		ordinary	square with bottom half black
U+02B14		ordinary	square with upper right diagonal half black
U+02B15		ordinary	square with lower left diagonal half black
U+02B16	◆	ordinary	diamond with left half black
U+02B17	\mathbf{A}	ordinary	diamond with right half black
U+02B18	\diamondsuit	ordinary	diamond with top half black
U+02B19	\Diamond	ordinary	diamond with bottom half black
U+02B1A		ordinary	dotted square
U+02B1B		ordinary	black large square
U+02B1C		ordinary	white large square
U+02B1D	•	ordinary	black very small square
U+02B1E	•	ordinary	white very small square
U+02B1F	•	ordinary	black pentagon
U+02B20	\bigcirc	ordinary	white pentagon
U+02B21	0	ordinary	white hexagon
U+02B22	•	ordinary	black hexagon

437

INLINE MATH

DISPLAYED MATH

EQUATION LABELS

ENUNCIATIONS

ILLUSTRATIONS

MATH FONTS

MEANINGFUL MATH

MISCELLANEOUS

UNICODE SYMBOLS

SETUPS

BIBLIOGRAPHY

U+02B23	•	ordinary	horizontal black hexagon	
U+02B24		ordinary	black large circle	GETTING STARTED
U+02B25	•	ordinary	black medium diamond	
U+02B26	\diamond	ordinary	white medium diamond	BUILDING BLOCKS
U+02B27	•	ordinary	black medium lozenge	KEYWORDS
U+02B28	\diamond	ordinary	white medium lozenge	KETWORDS
U+02B29	•	ordinary	black small diamond	INLINE MATH
U+02B2A	•	ordinary	black small lozenge	
U+02B2B	\$	ordinary	white small lozenge	DISPLAYED MATH
U+02B2C	•	ordinary	black horizontal ellipse	EQUATION LABELS
U+02B2D	0	ordinary	white horizontal ellipse	
U+02B2E	•	ordinary	black vertical ellipse	ENUNCIATIONS
U+02B2F	0	ordinary	white vertical ellipse	
U+02B30	↔	ordinary	left arrow with small circle	ILLUSTRATIONS
U+02B31	ŧ	ordinary	three leftwards arrows	MATH FONTS
U+02B32	\oplus	ordinary	left arrow with circled plus	
U+02B33	*****	ordinary	long leftwards squiggle arrow	MEANINGFUL MATH
U+02B34	«I-	ordinary	leftwards two-headed arrow with vertical stroke	
U+02B35	«II-	ordinary	leftwards two-headed arrow with double vertical stroke	MISCELLANEOUS
U+02B36	« 	ordinary	leftwards two-headed arrow from bar	UNICODE SYMBOLS
U+02B37		ordinary	leftwards two-headed triple dash arrow	
U+02B38	∢	ordinary	leftwards arrow with dotted stem	SETUPS
U+02B39	₩	ordinary	leftwards arrow with tail with vertical stroke	BIBLIOGRAPHY
U+02B3A	₩	ordinary	leftwards arrow with tail with double vertical stroke	BIBLIOGRAPHT

U+02B3B

U+02B3C

U+02B3D

U+02B3E

U+02B3F

U+02B40

U+02B41

U+02B42

U+02B43

U+02B44

U+02B45

U+02B46

U+02B47

U+02B48

U+02B49

U+02B4A

U+02B4B

U+02B4C

U+02B50

U+02B51

U+02B52

U+02B53

U+02B54

₩

₩К

⋘

↔

 \leftarrow

⇐

 \sim

Ś

 \rightarrow

⋺

⋹

⇒

 \rightarrow

⇒

←

←

÷

 \rightarrow

삸

*

*

 \bigcirc

ordinary	leftwards two-headed arrow with tail	INTRODUCTION
ordinary	leftwards two-headed arrow with tail with vertical stroke	GETTING STARTED
ordinary	leftwards two-headed arrow with tail with double vertical	
	stroke	BUILDING BLOCKS
-	6	KEYWORDS
ordinary	wave arrow pointing directly left	
ordinary	equals sign above leftwards arrow	INLINE MATH
ordinary	reverse tilde operator above leftwards arrow	
ordinary	leftwards arrow above reverse almost equal to	DISPLAYED MATH
ordinary	rightwards arrow through greater-than	EQUATION LABELS
ordinary	rightwards arrow through superset	
ordinary	leftwards quadruple arrow	ENUNCIATIONS
ordinary	rightwards quadruple arrow	
ordinary	reverse tilde operator above rightwards arrow	ILLUSTRATIONS
ordinary	rightwards arrow above reverse almost equal to	MATH FONTS
ordinary	tilde operator above leftwards arrow	
ordinary	leftwards arrow above almost equal to	MEANINGFUL MATH
ordinary	leftwards arrow above reverse tilde operator	
ordinary	rightwards arrow above reverse tilde operator	MISCELLANEOUS
ordinary	white medium star	UNICODE SYMBOLS
ordinary	black small star	
ordinary	white small star	SETUPS
ordinary	black right-pointing pentagon	BIBLIOGRAPHY
ordinary	white right-pointing pentagon	BIBLIOGRAPHT

INTRODUCTION 12.9 Supplemental Arrows-A U+027F0 ordinary upwards quadruple arrow GETTING STARTED ₼ downwards quadruple arrow U+027F1 ₩ ordinary **BUILDING BLOCKS** anticlockwise gapped circle arrow U+027F2 ℃ ordinary clockwise gapped circle arrow U+027F3 € ordinary **KEYWORDS** U+027F4 ↔ ordinary right arrow with circled plus relation long leftwards arrow U+027F5 ← \longleftarrow **INLINE MATH** relation long rightwards arrow $U+027F6 \longrightarrow \longrightarrow$ **DISPLAYED MATH** U+027F7 \leftrightarrow \longleftrightarrow relation long left right arrow relation long leftwards double arrow U+027F8 ← \Longleftarrow EQUATION LABELS long rightwards double arrow $U+027F9 \implies \ \ Longrightarrow$ relation long left right double arrow U+027FA ↔ \Longleftrightarrow relation **ENUNCIATIONS** long leftwards arrow from bar U+027FB ←→ \longmapsfrom relation **ILLUSTRATIONS** long rightwards arrow from bar U+027FC → \longmapsto relation U+027FD ← \Longmapsfrom long leftwards double arrow from relation MATH FONTS bar U+027FE ⊨⇒ \Longmapsto relation long rightwards double arrow from **MEANINGFUL MATH** bar MISCELLANEOUS \longrightsquigarrow relation long rightwards squiggle arrow U+027FF ------> UNICODE SYMBOLS 12.10 Supplemental Arrows-B

U+02900	-1»	ordinary	rightwards two-headed arrow with
			vertical stroke
U+02901	!!»	ordinary	rightwards two-headed arrow with

440

SETUPS

BIBLIOGRAPHY

				double vertical stroke	INTRODUCTION
U+02902	#		ordinary	leftwards double arrow with verti-	GETTING STARTED
			2	cal stroke	
U+02903	⇒		ordinary	rightwards double arrow with ver-	BUILDING BLOCKS
				tical stroke	
U+02904	\$		ordinary	left right double arrow with verti-	KEYWORDS
				cal stroke	INLINE MATH
U+02905	⊢≫		ordinary	rightwards two-headed arrow from	
				bar	DISPLAYED MATH
U+02906	ŧ	\Mapsfrom	relation	leftwards double arrow from bar	EQUATION LABELS
U+02907	⇒	\Mapsto	relation	rightwards double arrow from bar	
U+02908	ŧ		ordinary	downwards arrow with horizontal	ENUNCIATIONS
				stroke	
U+02909	‡		ordinary	upwards arrow with horizontal	ILLUSTRATIONS
				stroke	MATH FONTS
U+0290A	₼	\Uuparrow	relation	upwards triple arrow	
U+0290B	\Downarrow	\Ddownarrow	relation	downwards triple arrow	MEANINGFUL MATH
U+0290C	←-	\dashedleftarrow	relation	leftwards double dash arrow	
U+0290D	->	\dashedrightarrow	relation	rightwards double dash arrow	MISCELLANEOUS
U+0290E	<		ordinary	leftwards triple dash arrow	UNICODE SYMBOLS
U+0290F	>		ordinary	rightwards triple dash arrow	
U+02910	> 》		ordinary	rightwards two-headed triple dash	SETUPS
				arrow	BIBLIOGRAPHY
U+02911	>	\dottedrightarrow	relation	rightwards arrow with dotted stem	

J+02912	Ť		ordinary	upwards arrow to bar	INTRODUCTION
J+02913	Ť		ordinary	downwards arrow to bar	GETTING STARTED
J+02914	₩		ordinary	rightwards arrow with tail with	
				vertical stroke	BUILDING BLOCKS
J+02915	⊯		ordinary	rightwards arrow with tail with	KEYWORDS
				double vertical stroke	KEYWORDS
J+02916	≻	\twoheadrightarrowtail	relation	rightwards two-headed arrow with	INLINE MATH
				tail	
J+02917	,₩		relation	rightwards two-headed arrow with	DISPLAYED MATH
				tail with vertical stroke	EQUATION LABELS
J+02918	⊯		ordinary	rightwards two-headed arrow with	
				tail with double vertical stroke	ENUNCIATIONS
J+02919	\prec		ordinary	leftwards arrow-tail	
J+0291A	\succ		ordinary	rightwards arrow-tail	ILLUSTRATIONS
J+0291B			ordinary	leftwards double arrow-tail	MATH FONTS
J+0291C	≫		ordinary	rightwards double arrow-tail	
J+0291D	•←		ordinary	leftwards arrow to black diamond	MEANINGFUL MATH
J+0291E	→•		ordinary	rightwards arrow to black dia-	
				mond	MISCELLANEOUS
J+0291F	•		ordinary	leftwards arrow from bar to black	UNICODE SYMBOLS
				diamond	
J+02920	→•		ordinary	rightwards arrow from bar to black	SETUPS
				diamond	
J+02921	$\overline{\nabla}$	\nwsearrow	relation	north west and south east arrow	BIBLIOGRAPHY

UNICODE SYMBOLS » SUPPLEMENTAL ARROWS-B

U+02922	\mathcal{I}	\neswarrow	relation	north east and south west arrow	INTRODUCTION
U+02923	5	\lhooknwarrow	relation	north west arrow with hook	GETTING STARTED
	2	\rhooknearrow	relation	north east arrow with hook	
U+02925	2	\lhooksearrow	relation	south east arrow with hook	BUILDING BLOCKS
U+02926	2	\rhookswarrow	relation	south west arrow with hook	KEYWORDS
U+02927	X		ordinary	north west arrow and north east	
	17		andinamy	arrow	INLINE MATH
U+02928	Х		ordinary	north east arrow and south east arrow	DISPLAYED MATH
U+02929	X		ordinary	south east arrow and south west	
0102525	K.N		orunnary	arrow	EQUATION LABELS
U+0292A	X		ordinary	south west arrow and north west	ENUNCIATIONS
				arrow	
U+0292B	Х		ordinary	rising diagonal crossing falling	ILLUSTRATIONS
				diagonal	MATH FONTS
U+0292C	\times		ordinary	falling diagonal crossing rising	
				diagonal	MEANINGFUL MATH
U+0292D	Х		ordinary	south east arrow crossing north	MISCELLANEOUS
				east arrow	
U+0292E	Х		ordinary	north east arrow crossing south	UNICODE SYMBOLS
	17		1	east arrow	SETUPS
U+0292F	X		ordinary	falling diagonal crossing north	
U+02930	\sim		ordinary	east arrow rising diagonal crossing south east	BIBLIOGRAPHY
0-02930	X		orunnary	rising utagonal crossing south east	

			arrow	INTRODUCTION
U+02931	X	ordinary	north east arrow crossing north	GETTING STARTED
			west arrow	
U+02932	×	ordinary	north west arrow crossing north	BUILDING BLOCKS
			east arrow	KEYWORDS
U+02933	\rightarrow	ordinary	wave arrow pointing directly right	
U+02934	£	ordinary	arrow pointing rightwards then	INLINE MATH
			curving upwards	
U+02935	¢	ordinary	arrow pointing rightwards then	DISPLAYED MATH
			curving downwards	EQUATION LABELS
U+02936	Ŷ	ordinary	arrow pointing downwards then	
			curving leftwards	ENUNCIATIONS
U+02937	<i>ц</i>	ordinary	arrow pointing downwards then	
			curving rightwards	ILLUSTRATIONS
U+02938	2	ordinary	right-side arc clockwise arrow	MATH FONTS
U+02939	Ç	ordinary	left-side arc anticlockwise arrow	
U+0293A	\sim	ordinary	top arc anticlockwise arrow	MEANINGFUL MATH
U+0293B	<u>ч</u>	ordinary	bottom arc anticlockwise arrow	
U+0293C	A	ordinary	top arc clockwise arrow	MISCELLANEOUS
			with minus	UNICODE SYMBOLS
U+0293D	F	ordinary	top arc anticlockwise arrow with	
			plus	SETUPS
U+0293E	N)	ordinary	lower right semicircular clockwise	BIBLIOGRAPHY
			arrow	BIBLIOGRAPHT

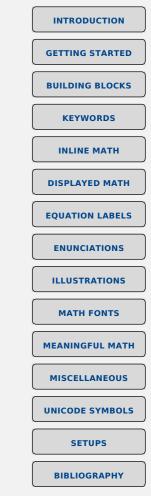
U+0293F	G	ordinary	lower left semicircular anticlock-	INTRODUCTION
			wise arrow	GETTING STARTED
U+02940	Ó	ordinary	anticlockwise closed circle arrow	
U+02941	Ò	ordinary	clockwise closed circle arrow	BUILDING BLOCKS
U+02942	$\overrightarrow{\leftarrow}$	ordinary	rightwards arrow above short left- wards arrow	KEYWORDS
U+02943	\Leftrightarrow	ordinary	leftwards arrow above short right- wards arrow	INLINE MATH
U+02944	\leftrightarrow	ordinary	short rightwards arrow above left-	DISPLAYED MATH
U+02945		ordinary	wards arrow rightwards arrow with plus below	EQUATION LABELS
	Ŧ	-	•	
U+02946	< <u>↓</u>	•	leftwards arrow with plus below	ENUNCIATIONS
U+02947	*	5	rightwards arrow through x	ILLUSTRATIONS
U+02948	⇔	ordinary	left right arrow through	ILLUSTRATIONS
			small circle	MATH FONTS
U+02949	₹	ordinary	upwards two-headed arrow from	
		2	small circle	MEANINGFUL MAT
U+0294A	~ ,	ordinary	left barb up right barb down	MISCELLANEOUS
			harpoon	
U+0294B	~~	ordinary	left barb down right barb up harpoon	UNICODE SYMBOL
11.00046	x	1	* *	SETUPS
U+0294C	1	ordinary	up barb right down barb	521075
			left harpoon	BIBLIOGRAPHY
U+0294D	1	ordinary	up barb left down barb right	

		~	
- 4	4	n	

			harpoon	INTRODUCTION
U+0294E	<u>↔</u>	ordinary	left barb up right barb up harpoon	GETTING STARTED
U+0294F	1	ordinary	up barb right down barb	
		-	right harpoon	BUILDING BLOCKS
U+02950	$\overline{\nabla}$	ordinary	left barb down right barb down	KEYWORDS
			harpoon	KETWORDS
U+02951	1	ordinary	up barb left down barb left har-	INLINE MATH
			poon	
U+02952	<u> </u>	ordinary	leftwards harpoon with barb up	DISPLAYED MATH
			to bar (EQUATION LABELS
U+02953	<u> </u>	ordinary	rightwards harpoon with barb up	
			to bar	ENUNCIATIONS
U+02954	1	ordinary	upwards harpoon with barb right	
			to bar	ILLUSTRATIONS
U+02955	Ţ	ordinary	downwards harpoon with barb	MATH FONTS
			right to bar	
U+02956	I 	ordinary	leftwards harpoon with barb down	MEANINGFUL MATH
			to bar	
U+02957	<u>→</u> I	ordinary	rightwards harpoon with barb	MISCELLANEOUS
		-	down to bar	UNICODE SYMBOLS
U+02958	T	ordinary	upwards harpoon with barb left	
		-	to bar	SETUPS
U+02959	7	ordinary	downwards harpoon with barb left	
			to bar	BIBLIOGRAPHY

U+0295A	4	ordinary	leftwards harpoon with barb up	INTRODUCTION
			from bar	GETTING STARTED
U+0295B	\mapsto	ordinary	rightwards harpoon with barb up	
		2	from bar	BUILDING BLOCKS
U+0295C	1	ordinary	upwards harpoon with barb right	KEYWORDS
			from bar	KEIWORDS
U+0295D	Ţ	ordinary	downwards harpoon with barb	INLINE MATH
			right from bar	
U+0295E	~ 1	ordinary	leftwards harpoon with barb down	DISPLAYED MATH
			from bar	EQUATION LABELS
U+0295F	⊢ ,	ordinary	rightwards harpoon with barb	
		-	down from bar	ENUNCIATIONS
U+02960	1	ordinary	upwards harpoon with barb left	
			from bar	ILLUSTRATIONS
U+02961	1	ordinary	downwards harpoon with barb left	MATH FONTS
			from bar	
U+02962	÷	ordinary	leftwards harpoon with barb up	MEANINGFUL MATH
			above leftwards harpoon with barb	
			down	MISCELLANEOUS
U+02963	11	ordinary	upwards harpoon with barb left	UNICODE SYMBOLS
			beside upwards harpoon with barb	
			right	SETUPS
U+02964	\Rightarrow	ordinary	rightwards harpoon with barb up	
			above rightwards harpoon with	BIBLIOGRAPHY

			barb down	INTRODUCTION
U+02965	\downarrow	ordinary	downwards harpoon with barb left	GETTING STARTED
			beside downwards harpoon with	
			barb right	BUILDING BLOCKS
U+02966	₩	ordinary	leftwards harpoon with barb up	KEYWORDS
			above rightwards harpoon with	
			barb up	INLINE MATH
U+02967	7	ordinary	leftwards harpoon with barb down	
			above rightwards harpoon with	DISPLAYED MATH
			barb down	EQUATION LABELS
U+02968	⇒	ordinary	rightwards harpoon with barb up	
			above leftwards harpoon with barb	ENUNCIATIONS
			up	
U+02969	₹	ordinary	rightwards harpoon with barb	ILLUSTRATIONS
			down above leftwards harpoon	MATH FONTS
			with barb down	
U+0296A	<u> </u>	ordinary	leftwards harpoon with barb up	MEANINGFUL MATH
			above long dash	
U+0296B	=	ordinary	leftwards harpoon with barb down	MISCELLANEOUS
			below long dash	UNICODE SYMBOLS
U+0296C	\Rightarrow	ordinary	rightwards harpoon with barb up	
			above long dash	SETUPS
U+0296D	\Rightarrow	ordinary	rightwards harpoon with barb	BIBLIOGRAPHY
			down below long dash	DIDLIUGRAFIT


U+0296E	11	ordinary	upwards harpoon with barb left	INTRODUCTION
		5	beside downwards harpoon with	GETTING STARTED
			barb right	
U+0296F	11	ordinary	downwards harpoon with barb	BUILDING BLOCKS
			left beside upwards harpoon with	KEYWORDS
			barb right	KETWORDS
U+02970	–	ordinary	right double arrow with rounded	INLINE MATH
			head	
U+02971	\Longrightarrow	ordinary	equals sign above right-	DISPLAYED MATH
			wards arrow	EQUATION LABELS
U+02972	$\xrightarrow{\sim}$	ordinary	tilde operator above rightwards	
			arrow	ENUNCIATIONS
U+02973	$\overleftarrow{\sim}$	ordinary	leftwards arrow above tilde	
			operator	ILLUSTRATIONS
U+02974	\Rightarrow	ordinary	rightwards arrow above	MATH FONTS
			tilde operator	
U+02975	⋧	ordinary	rightwards arrow above almost	MEANINGFUL MATH
			equal to	
U+02976	≨	ordinary	less-than above leftwards arrow	MISCELLANEOUS
U+02977	≪	ordinary	leftwards arrow through less-than	UNICODE SYMBOLS
U+02978	≩	ordinary	greater-than above right-	
			wards arrow	SETUPS
U+02979	Ş	ordinary	subset above rightwards arrow	BIBLIOGRAPHY
U+0297A	Æ	ordinary	leftwards arrow through subset	DIDLIUGRAPHT

U+0297B	⊋	ordinary	superset above leftwards arrow
U+0297C	+	ordinary	left fish tail
U+0297D	\rightarrow	ordinary	right fish tail
U+0297E	Υ	ordinary	up fish tail
U+0297F	Τ	ordinary	down fish tail

12.11 Mathematical Alphanumeric Symbols

U+003B1	α	∖alpha	va
U+003B2	β	\beta	va
U+003B3	γ	∖gamma	va
U+003B4	δ	\delta	va
U+003B5	ε	\varepsilon	va
U+003B6	ζ	∖zeta	va
U+003B7	η	\eta	va
U+003B8	θ	\theta	va
U+003B9	ι	∖iota	va
U+003BA	κ	\kappa	va
U+003BB	λ	\lambda	va
U+003BC	μ	\mu	va
U+003BD	ν	\nu	va
U+003BE	ξ	\xi	va
U+003BF	0	\omicron	va
U+003C0	π	\pi	va
U+003C1	ρ	\rho	va


riable greek small letter alpha ariable greek small letter beta riable greek small letter gamma riable greek small letter delta greek small letter epsilon riable ariable greek small letter zeta riable greek small letter eta ariable greek small letter theta ariable greek small letter iota ariable greek small letter kappa greek small letter lamda riable greek small letter mu riable ariable greek small letter nu ariable greek small letter xi ariable greek small letter omicron riable greek small letter pi riable greek small letter rho

U+003C2	ς	\varsigma	۲
U+003C3	σ	\sigma	Ţ
U+003C4	τ	\tau	V
U+003C5	υ	\upsilon	V
U+003C6	φ	\varphi	٧
U+003C7	χ	\chi	V
U+003C8	ψ	\psi	V
U+003C9	ω	\omega	V
U+00391	Α	\Alpha	vari
U+00392	В	\Beta	vari
U+00393	Γ	\Gamma	vari
U+00394	Δ	\Delta	vari
U+00395	Е	\Epsilon	vari
U+00396	Ζ	∖Zeta	vari
U+00397	Η	\Eta	vari
U+00398	Θ	\Theta	vari
U+00399	Ι	\Iota	vari
U+0039A	Κ	∖Карра	vari
U+0039B	Λ	\Lambda	vari
U+0039C	Μ	∖Mu	vari
U+0039D	Ν	\Nu	vari
U+0039E	Ξ	\Xi	vari
U+0039F	0	\Omicron	vari
U+003A0	П	∖Pi	vari

variab	le greek small letter sigma
variab	le greek small letter tau
variab	le greek small letter upsilon
variab	le greek small letter phi
variab	le greek small letter chi
variab	le greek small letter psi
variab	le greek small letter omega
ariable	greek capital letter alpha
ariable	greek capital letter beta
ariable	greek capital letter gamma
ariable	greek capital letter delta
ariable	greek capital letter epsilon
ariable	greek capital letter zeta
ariable	greek capital letter eta
ariable	greek capital letter theta
variable	greek capital letter iota
variable	greek capital letter kappa
variable	greek capital letter lamda
variable	greek capital letter mu
variable	greek capital letter nu
variable	greek capital letter xi
ariable	greek capital letter omicron
ariable	greek capital letter pi

variable greek small letter final sigma

							ĺ	INTRODUCTION
U+003	A1	Р	\Rho	variable	greek capital le	etter rho	l	INTRODUCTION
U+003	A3	Σ	\Sigma	variable	greek capital le	etter sigma	ĺ	GETTING STARTED
U+003	A4	Т	\Tau	variable	greek capital le	etter tau	l l	
U+003	A5	Y	\Upsilon	variable	greek capital le	etter upsilon		BUILDING BLOCKS
U+003	A6	Φ	\Phi	variable	greek capital le	etter phi	ſ	
U+003	A7	Х	\Chi	variable	greek capital le	etter chi	l	KEYWORDS
U+003	8A	Ψ	\Psi	variable	greek capital le	etter psi	ĺ	INLINE MATH
U+003	A9	Ω	\Omega	variable	greek capital le	etter omega	l	
U+003	AA	Ϊ		variable	greek capital le	etter iota with dialytika		DISPLAYED MATH
U+1D4	00	A			variable	mathematical bold capital a	ĺ	EQUATION LABELS
U+1D4		B			variable	mathematical bold capital b	l	EQUATION LABELS
U+1D4		D C			variable	mathematical bold capital c	ĺ	ENUNCIATIONS
U+1D4		D			variable	mathematical bold capital d	(
U+1D4		р Е			variable	mathematical bold capital e	l	ILLUSTRATIONS
U+1D4		F			variable	mathematical bold capital f	Ì	
U+1D4		г G			variable	mathematical bold capital g	l	MATH FONTS
U+1D4		H			variable	mathematical bold capital h	ĺ	MEANINGFUL MATH
U+1D4		I			variable	mathematical bold capital i	(
U+1D4		J			variable	mathematical bold capital j	l	MISCELLANEOUS
U+1D4		у К			variable	mathematical bold capital k	í	UNICODE SYMBOLS
U+1D4		L			variable	mathematical bold capital l	l	UNICODE SYMBOLS
U+1D4		M			variable	mathematical bold capital m	ĺ	SETUPS
U+1D4		N			variable	mathematical bold capital n	(
U+1D4		0			variable	mathematical bold capital o		BIBLIOGRAPHY
0,104		0			variable	mathematical bold capital 0		

mathematical bold capital p mathematical bold capital q mathematical bold capital r mathematical bold capital s mathematical bold capital t mathematical bold capital u mathematical bold capital v mathematical bold capital w mathematical bold capital x mathematical bold capital y mathematical bold capital z mathematical bold small a mathematical bold small b mathematical bold small c mathematical bold small d mathematical bold small e mathematical bold small f mathematical bold small g mathematical bold small h mathematical bold small i mathematical bold small j mathematical bold small k mathematical bold small l mathematical bold small m

U+1D40F	Р
U+1D410	Q
U+1D411	R
U+1D412	S
U+1D413	Т
U+1D414	U
U+1D415	\mathbf{V}
U+1D416	W
U+1D417	Х
U+1D418	Y
U+1D419	Ζ
U+1D41A	a
U+1D41B	b
U+1D41C	c
U+1D41D	d
U+1D41E	e
U+1D41F	f
U+1D420	g
U+1D421	h
U+1D422	i
U+1D423	j
U+1D424	k
U+1D425	1
U+1D426	m

INTRODUCTION
GETTING STARTED
BUILDING BLOCKS
KEYWORDS
INLINE MATH
DISPLAYED MATH
EQUATION LABELS
ENUNCIATIONS
ILLUSTRATIONS
MATH FONTS
MEANINGFUL MATH
MISCELLANEOUS
UNICODE SYMBOLS
SETUPS
BIBLIOGRAPHY

mathematical bold small n mathematical bold small o mathematical bold small p mathematical bold small q mathematical bold small r mathematical bold small s mathematical bold small t mathematical bold small u mathematical bold small v mathematical bold small w mathematical bold small x mathematical bold small y mathematical bold small z mathematical italic capital a mathematical italic capital b mathematical italic capital c mathematical italic capital d

mathematical italic capital e mathematical italic capital f mathematical italic capital g mathematical italic capital h mathematical italic capital i mathematical italic capital j

variable \mathDitalicshape differential variable variable variable variable variable variable

U+1D427 n U+1D428 0 U+1D429 p U+1D42A q U+1D42B r U+1D42C s U+1D42D t U+1D42E u U+1D42F v U+1D430 w U+1D431 x U+1D432 V U+1D433 z U+1D434 A U+1D435 В U+1D436 CU+1D437 D U+1D438 EU+1D439 FU+1D43A G U+1D43B HU+1D43C I U+1D43D J

U+1D43E K

mathematical italic capital k	
mathematical italic capital l	GETTING STARTED
mathematical italic capital m mathematical italic capital n	BUILDING BLOCKS
mathematical italic capital o mathematical italic capital p	KEYWORDS
mathematical italic capital q	
mathematical italic capital r mathematical italic capital s	DISPLAYED MATH
mathematical italic capital t	EQUATION LABELS
mathematical italic capital u	ENUNCIATIONS
mathematical italic capital v mathematical italic capital w	ILLUSTRATIONS
mathematical italic capital x	MATH FONTS
mathematical italic capital y mathematical italic capital z	MEANINGFUL MATH
mathematical italic small a mathematical italic small b	MISCELLANEOUS
mathematical italic small c	UNICODE SYMBOLS
mathematical italic small d	SETUPS
mathematical italic small e	BIBLIOGRAPHY

U+1D43F	L	
U+1D440	M	
U+1D441	N	
U+1D442	0	
U+1D443	Р	
U+1D444	Q	
U+1D445	R	
U+1D446	S	
U+1D447	Т	
		\transposesymbol
U+1D448	U	
U+1D449	V	
U+1D44A	W	
U+1D44B	X	
U+1D44C	Y	
U+1D44D	Z	
U+1D44E	а	
U+1D44F	b	
U+1D450	С	
U+1D451	d	
		\mathditalicshape
U+1D452	е	
		\matheitalicshape

\matheitalicshape

variable

differential

exponential

prime variable

GETTING STARTED	
BUILDING BLOCKS	
KEYWORDS	
INLINE MATH	
DISPLAYED MATH	
EQUATION LABELS	
ENUNCIATIONS	
ILLUSTRATIONS	
MATH FONTS	
MEANINGFUL MATH	
MISCELLANEOUS	
UNICODE SYMBOLS	
SETUPS	
BIBLIOGRAPHY	

variable mathematical italic small f variable mathematical italic small g variable planck constant mathematical italic small i variable imaginary cshape variable mathematical italic small j imaginary cshape variable mathematical italic small k variable mathematical italic small l variable mathematical italic small m variable mathematical italic small n variable mathematical italic small o variable mathematical italic small p variable mathematical italic small q variable mathematical italic small r variable mathematical italic small s variable mathematical italic small t mathematical italic small u variable variable mathematical italic small v variable mathematical italic small w variable mathematical italic small x variable mathematical italic small y mathematical italic small z variable mathematical bold italic capital a variable

U+1D453	f	
U+1D454	g	
U+0210E	h	\Planckconst
U+1D456	i	
		\mathiitalio
U+1D457	j	
		\mathjitalio
U+1D458	k	
U+1D459	l	
U+1D45A	т	
U+1D45B	п	
U+1D45C	0	
U+1D45D	р	
U+1D45E	q	
U+1D45F	r	
U+1D460	S	
U+1D461	t	
U+1D462	и	
U+1D463	υ	
U+1D464	w	
U+1D465	x	
U+1D466	у	
U+1D467	Z	
U+1D468	A	

mathematical bold italic capital b	INTRODUCTION
mathematical bold italic capital c	GETTING STARTED
mathematical bold italic capital d mathematical bold italic capital e	BUILDING BLOCKS
mathematical bold italic capital f	
mathematical bold italic capital g	KEYWORDS
mathematical bold italic capital h	INLINE MATH
mathematical bold italic capital i mathematical bold italic capital j	DISPLAYED MATH
mathematical bold italic capital k mathematical bold italic capital l	EQUATION LABELS
mathematical bold italic capital m	ENUNCIATIONS
mathematical bold italic capital n mathematical bold italic capital o	ILLUSTRATIONS
mathematical bold italic capital p	MATH FONTS
mathematical bold italic capital q mathematical bold italic capital r	MEANINGFUL MATH
mathematical bold italic capital s mathematical bold italic capital t	MISCELLANEOUS
mathematical bold italic capital u	UNICODE SYMBOLS
mathematical bold italic capital v mathematical bold italic capital w	SETUPS
mathematical bold italic capital x	BIBLIOGRAPHY
mathematical bold italic capital y	

U+1D469	B
U+1D46A	С
U+1D46B	D
U+1D46C	E
U+1D46D	F
U+1D46E	G
U+1D46F	\boldsymbol{H}
U+1D470	Ι
U+1D471	J
U+1D472	K
U+1D473	L
U+1D474	M
U+1D475	N
U+1D476	0
U+1D477	P
U+1D478	Q
U+1D479	R
U+1D47A	S
U+1D47B	Τ
U+1D47C	U
U+1D47D	V
U+1D47E	W
U+1D47F	X
U+1D480	Y

GETTING STARTED
BUILDING BLOCKS
KEYWORDS
INLINE MATH
DISPLAYED MATH
EQUATION LABELS
ENUNCIATIONS
ILLUSTRATIONS
MATH FONTS
MEANINGFUL MATH
MISCELLANEOUS
UNICODE SYMBOLS
SETUPS
BIBLIOGRAPHY

mathematical bold italic capital z mathematical bold italic small a mathematical bold italic small b mathematical bold italic small c mathematical bold italic small d mathematical bold italic small e mathematical bold italic small f mathematical bold italic small g mathematical bold italic small h mathematical bold italic small i mathematical bold italic small j mathematical bold italic small k mathematical bold italic small l mathematical bold italic small m mathematical bold italic small n mathematical bold italic small o mathematical bold italic small p mathematical bold italic small q mathematical bold italic small r mathematical bold italic small s mathematical bold italic small t mathematical bold italic small u mathematical bold italic small v mathematical bold italic small w

U+1D481	\boldsymbol{Z}
U+1D482	а
U+1D483	b
U+1D484	с
U+1D485	d
U+1D486	е
U+1D487	f
U+1D488	g
U+1D489	h h
U+1D48A	i
U+1D48B	j
U+1D48C	j k
U+1D48D	l
U+1D48E	m
U+1D48F	n
U+1D401	n 0
U+1D490	-
U+1D491	р а
	q
U+1D493	r
U+1D494	S
U+1D495	t
U+1D496	u
U+1D497	v
U+1D498	w

				INTRODUCTION
U+1D499	x	variable	mathematical bold italic small x	INTRODUCTION
U+1D49A	У	variable	mathematical bold italic small y	GETTING STARTED
U+1D49B	z	variable	mathematical bold italic small z	
U+1D49C	\mathcal{A}	variable	mathematical script capital a	BUILDING BLOCKS
U+0212C	\mathscr{B}	variable	script capital b	KEYWORDS
U+1D49E	${\mathscr C}$	variable	mathematical script capital c	KETWORDS
U+1D49F	D	variable	mathematical script capital d	INLINE MATH
U+02130	E	variable	script capital e	
U+02131	${\cal F}$	variable	script capital f	DISPLAYED MATH
U+1D4A2	${\mathcal G}$	variable	mathematical script capital g	EQUATION LABELS
U+0210B	${\cal H}$	variable	script capital h	
U+02110	${\mathcal F}$	variable	script capital i	ENUNCIATIONS
U+1D4A5	J	variable	mathematical script capital j	
U+1D4A6	${\mathcal K}$	variable	mathematical script capital k	ILLUSTRATIONS
U+02112	\mathscr{L}	variable	script capital l	MATH FONTS
U+02133	\mathcal{M}	variable	script capital m	
U+1D4A9	\mathcal{N}	variable	mathematical script capital n	MEANINGFUL MATH
U+1D4AA	Ø	variable	mathematical script capital o	
U+1D4AB	${\mathcal P}$	variable	mathematical script capital p	MISCELLANEOUS
U+1D4AC	\mathcal{Q}	variable	mathematical script capital q	UNICODE SYMBOLS
U+0211B	${\mathscr R}$	variable	script capital r	
U+1D4AE	8	variable	mathematical script capital s	SETUPS
U+1D4AF	${\mathcal T}$	variable	mathematical script capital t	BIBLIOGRAPHY
U+1D4B0	$\mathcal U$	variable	mathematical script capital u	BIBLIOGRAPHT

mathematical script capital v	INTRODUCTION
mathematical script capital w	GETTING STARTED
mathematical script capital x	
mathematical script capital y	BUILDING BLOCKS
mathematical script capital z	KEYWORDS
mathematical script small a	KETWORDS
mathematical script small b	INLINE MATH
mathematical script small c	
mathematical script small d	DISPLAYED MATH
script small e	EQUATION LABELS
mathematical script small f	
script small g	ENUNCIATIONS
mathematical script small h	
mathematical script small i	ILLUSTRATIONS
mathematical script small j	MATH FONTS
mathematical script small k	
mathematical script small l	MEANINGFUL MATH
mathematical script small m	
mathematical script small n	MISCELLANEOUS
script small o	UNICODE SYMBOLS
mathematical script small p	
mathematical script small q	SETUPS
mathematical script small r	
mathematical script small s	BIBLIOGRAPHY
in a serie serie series s	

${\mathscr V}$
W
${\mathfrak X}$
¥
Z
a
ħ
C
đ
e
ſ
G
ĥ
i
j
k
ł
т
n
Л
р
- I
r
\$

variable

INTRODUCTION
GETTING STARTED
BUILDING BLOCKS
KEYWORDS
INLINE MATH
DISPLAYED MATH
EQUATION LABELS
ENUNCIATIONS
ILLUSTRATIONS
MATH FONTS
MEANINGFUL MATH
MISCELLANEOUS
UNICODE SYMBOLS
SETUPS
BIBLIOGRAPHY

mathematical script small t mathematical script small u mathematical script small v mathematical script small w mathematical script small x mathematical script small y mathematical script small z mathematical bold script capital a mathematical bold script capital b mathematical bold script capital c mathematical bold script capital d mathematical bold script capital e mathematical bold script capital f mathematical bold script capital g mathematical bold script capital h mathematical bold script capital i mathematical bold script capital j mathematical bold script capital k mathematical bold script capital l mathematical bold script capital m mathematical bold script capital n mathematical bold script capital o mathematical bold script capital p mathematical bold script capital q

U+1D4C9	t
U+1D4CA	u
U+1D4CB	v
U+1D4CC	w
U+1D4CD	x
U+1D4CE	у
U+1D4CF	z
U+1D4D0	A
U+1D4D1	В
U+1D4D2	С
U+1D4D3	Ð
U+1D4D4	E
U+1D4D5	F
U+1D4D6	G
U+1D4D7	${\cal H}$
U+1D4D8	F
U+1D4D9	J
U+1D4DA	${\mathcal K}$
U+1D4DB	${\mathscr L}$
U+1D4DC	М
U+1D4DD	${\mathcal N}$
U+1D4DE	Ø
U+1D4DF	Þ
U+1D4E0	\mathcal{Q}

GETTING STARTED
BUILDING BLOCKS
KEYWORDS
INLINE MATH
DISPLAYED MATH
EQUATION LABELS
ENUNCIATIONS
ILLUSTRATIONS
MATH FONTS
MEANINGFUL MATH
MISCELLANEOUS
UNICODE SYMBOLS
SETUPS
BIBLIOGRAPHY

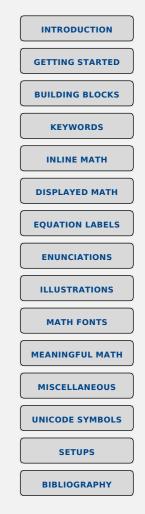
mathematical bold script capital r mathematical bold script capital s mathematical bold script capital t mathematical bold script capital u mathematical bold script capital v mathematical bold script capital w mathematical bold script capital x mathematical bold script capital y mathematical bold script capital z mathematical bold script small a mathematical bold script small b mathematical bold script small c mathematical bold script small d mathematical bold script small e mathematical bold script small f mathematical bold script small g mathematical bold script small h mathematical bold script small i mathematical bold script small j mathematical bold script small k mathematical bold script small l mathematical bold script small m mathematical bold script small n mathematical bold script small o

U+1D4E1	R
U+1D4E2	8
U+1D4E3	${\mathcal T}$
U+1D4E4	U
U+1D4E5	V
U+1D4E6	W
U+1D4E7	x
U+1D4E8	¥
U+1D4E9	Z
U+1D4EA	a
U+1D4EB	б
U+1D4EC	c
U+1D4ED	d
U+1D4EE	e
U+1D4EF	ſ
U+1D4F0	Ð
U+1D4F1	h
U+1D4F2	i
U+1D4F3	j
U+1D4F4	k
U+1D4F5	ł
U+1D4F6	m
U+1D4F7	n
U+1D4F8	۰ 0

BIBLIOGRAPHY

463

mathematical bold script small p mathematical bold script small q mathematical bold script small r mathematical bold script small s mathematical bold script small t mathematical bold script small u mathematical bold script small v mathematical bold script small w mathematical bold script small x mathematical bold script small y mathematical bold script small z mathematical fraktur capital a mathematical fraktur capital b black-letter capital c mathematical fraktur capital d mathematical fraktur capital e mathematical fraktur capital f mathematical fraktur capital g black-letter capital h black-letter capital i mathematical fraktur capital j mathematical fraktur capital k mathematical fraktur capital l mathematical fraktur capital m


variable

U+1D4F9	p	
U+1D4FA	Ą	
U+1D4FB	r	
U+1D4FC	\$	
U+1D4FD	t	
U+1D4FE	u	
U+1D4FF	v	
U+1D500	w	
U+1D501	x	
U+1D502	y	
U+1D503	z	
U+1D504	A	
U+1D505	B	
U+0212D	C	
U+1D507	Ð	
U+1D508	E	
U+1D509	F	
U+1D50A	ß	
U+0210C	5	
U+02111	ŝ	\Im
U+1D50D	\Im	
U+1D50E	R	
U+1D50F	L	
U+1D510	M	

U+1D511	N	
U+1D512	\mathfrak{O}	
U+1D513	P	
U+1D514	Q	
U+0211C	R	∖Re
U+1D516	ଭ	
U+1D517	T	
U+1D518	U	
U+1D519	V	
U+1D51A	233	
U+1D51B	x	
U+1D51C	Ŋ	
U+02128	* 3	
U+1D51E	, e	
	a	
U+1D51F	\mathfrak{b}	
U+1D520	C	
U+1D521	ð	
U+1D522	e	
U+1D523	f	
U+1D524	g	
U+1D525	\mathfrak{h}	
U+1D526	i	
U+1D527	İ	
U+1D528	ŧ	

mathematical fraktur capital n mathematical fraktur capital o mathematical fraktur capital p mathematical fraktur capital q black-letter capital r mathematical fraktur capital s mathematical fraktur capital t mathematical fraktur capital u mathematical fraktur capital v mathematical fraktur capital w mathematical fraktur capital x mathematical fraktur capital y black-letter capital z mathematical fraktur small a mathematical fraktur small b mathematical fraktur small c mathematical fraktur small d mathematical fraktur small e mathematical fraktur small f mathematical fraktur small g mathematical fraktur small h mathematical fraktur small i mathematical fraktur small j mathematical fraktur small k

variable

mathematical fraktur small l	INTRODUCTION
mathematical fraktur small m	GETTING STARTED
mathematical fraktur small n	
mathematical fraktur small o	BUILDING BLOCKS
mathematical fraktur small p	KEYWORDS
mathematical fraktur small q	KETWORDS
mathematical fraktur small r	INLINE MATH
mathematical fraktur small s	
mathematical fraktur small t	DISPLAYED MATH
mathematical fraktur small u	EQUATION LABELS
mathematical fraktur small v	
mathematical fraktur small w	ENUNCIATIONS
mathematical fraktur small x	
mathematical fraktur small y	ILLUSTRATIONS
mathematical fraktur small z	MATH FONTS
mathematical double-struck capital	
a	MEANINGFUL MATH
mathematical double-struck capital	
b	MISCELLANEOUS
double-struck capital c	UNICODE SYMBOLS
mathematical double-struck capital	SETUPS
d	BIBLIOGRAPHY
mathematical double-struck capital	

U+1D529	l		variable
U+1D52A	m		variable
U+1D52B	n		variable
U+1D52C	ø		variable
U+1D52D	þ		variable
U+1D52E	q		variable
U+1D52F	r		variable
U+1D530	S		variable
U+1D531	t		variable
U+1D532	u		variable
U+1D533	b		variable
U+1D534	w		variable
U+1D535	¥		variable
U+1D536	ŋ		variable
U+1D537	3		variable
U+1D538	A		variable
U+1D539	B		variable
U+02102	\mathbb{C}		variable
U+1D53B	\mathbb{D}	\complexes	ordinary variable
U+1D53C	E		variable

				e	INTRODUCTION
U+1D53D	F		variable	mathematical double-struck capital f	GETTING STARTED
U+1D53E	\mathbb{G}		variable	mathematical double-struck capital	
				g	BUILDING BLOCKS
U+0210D	Η		variable	double-struck capital h	KEYWORDS
U+1D540	0		variable	mathematical double-struck capital i	KETWORDS
U+1D541	J		variable	mathematical double-struck capital j	INLINE MATH
U+1D542	\mathbb{K}		variable	mathematical double-struck capital	
				k	DISPLAYED MATH
U+1D543	L		variable	mathematical double-struck capital l	EQUATION LABELS
U+1D544	M		variable	mathematical double-struck capital	
				m	ENUNCIATIONS
U+02115	\mathbb{N}	\naturalnumbers	variable	double-struck capital n	
U+1D546	\mathbb{O}		variable	mathematical double-struck capital	ILLUSTRATIONS
				0	MATH FONTS
U+02119	\mathbb{P}	\primes	variable	double-struck capital p	
U+0211A	\mathbb{Q}	\rationals	variable	double-struck capital q	MEANINGFUL MATH
U+0211D	\mathbb{R}	\reals	variable	double-struck capital r	MISCELLANEOUS
U+1D54A	S		variable	mathematical double-struck capital	MISCELLANEOUS
				S	UNICODE SYMBOLS
U+1D54B	\mathbb{T}		variable	mathematical double-struck capital t	
U+1D54C	\mathbb{U}		variable	mathematical double-struck capital	SETUPS
				u	BIBLIOGRAPHY
U+1D54D	\mathbb{V}		variable	mathematical double-struck capital	

				V	INTRODUCTION
U+1D54E	W		variable	mathematical double-struck capital	GETTING STARTED
				W	
U+1D54F	\mathbb{X}		variable	mathematical double-struck capital	BUILDING BLOCKS
				X	KEYWORDS
U+1D550	¥		variable	mathematical double-struck capital	
	_			у	INLINE MATH
U+02124	\mathbb{Z}	\integers	variable	double-struck capital z	
U+1D552	a		variable	mathematical double-struck small a	DISPLAYED MATH
U+1D553	b		variable	mathematical double-struck small b	EQUATION LABELS
U+1D554	\mathbb{C}		variable	mathematical double-struck small c	
U+1D555	ď		variable	mathematical double-struck small d	ENUNCIATIONS
U+1D556	e		variable	mathematical double-struck small e	
U+1D557	ſ		variable	mathematical double-struck small f	ILLUSTRATIONS
U+1D558	g		variable	mathematical double-struck small g	MATH FONTS
U+1D559	h		variable	mathematical double-struck small h	
U+1D55A	Ö		variable	mathematical double-struck small i	MEANINGFUL MATH
U+1D55B	j		variable	mathematical double-struck small j	[
U+1D55C	k		variable	mathematical double-struck small k	MISCELLANEOUS
U+1D55D	1		variable	mathematical double-struck small l	UNICODE SYMBOLS
U+1D55E	m		variable	mathematical double-struck small m	
U+1D55F	n		variable	mathematical double-struck small n	SETUPS
U+1D560	O		variable	mathematical double-struck small o	
U+1D561	р		variable	mathematical double-struck small p	BIBLIOGRAPHY

INTRODUCTION **GETTING STARTED BUILDING BLOCKS KEYWORDS INLINE MATH DISPLAYED MATH EQUATION LABELS ENUNCIATIONS ILLUSTRATIONS** MATH FONTS **MEANINGFUL MATH** MISCELLANEOUS UNICODE SYMBOLS SETUPS

BIBLIOGRAPHY

mathematical double-struck small q mathematical double-struck small r mathematical double-struck small s mathematical double-struck small t mathematical double-struck small u mathematical double-struck small v mathematical double-struck small w mathematical double-struck small x mathematical double-struck small y mathematical double-struck small z mathematical bold fraktur capital a mathematical bold fraktur capital b mathematical bold fraktur capital c mathematical bold fraktur capital d mathematical bold fraktur capital e mathematical bold fraktur capital f mathematical bold fraktur capital g mathematical bold fraktur capital h mathematical bold fraktur capital i mathematical bold fraktur capital j mathematical bold fraktur capital k mathematical bold fraktur capital l mathematical bold fraktur capital m mathematical bold fraktur capital n

variable

U+1D562 a U+1D563 r U + 1D564S U+1D565 ſ U+1D566 пл U+1D567 v U+1D568 WV U + 1D569X U+1D56A V U+1D56B 77 U + 1D56C- 21 23 U+1D56D U+1D56E C U+1D56F ୭ U+1D570 E U+1D571 ¥ U+1D572 65 U+1D573 H U+1D574 ĩ U+1D575 3 U+1D576 R U+1D577 2 U+1D578 M U+1D579 N

468

variable	mathematical bold fraktur capital o	
variable	mathematical bold fraktur capital p	GETTING STARTED
variable	mathematical bold fraktur capital q	
variable	mathematical bold fraktur capital r	BUILDING BLOCKS
variable	mathematical bold fraktur capital s	KEYWORDS
variable	mathematical bold fraktur capital t	
variable	mathematical bold fraktur capital u	INLINE MATH
variable	mathematical bold fraktur capital v	
variable	mathematical bold fraktur capital w	DISPLAYED MATH
variable	mathematical bold fraktur capital x	EQUATION LABELS
variable	mathematical bold fraktur capital y	
variable	mathematical bold fraktur capital z	ENUNCIATIONS
variable	mathematical bold fraktur small a	
variable	mathematical bold fraktur small b	ILLUSTRATIONS
variable	mathematical bold fraktur small c	MATH FONTS
variable	mathematical bold fraktur small d	
variable	mathematical bold fraktur small e	MEANINGFUL MATH
variable	mathematical bold fraktur small f	MISCELLANEOUS
variable	mathematical bold fraktur small g	MISCELLANEOUS
variable	mathematical bold fraktur small h	UNICODE SYMBOLS
variable	mathematical bold fraktur small i	
variable	mathematical bold fraktur small j	SETUPS
variable	mathematical bold fraktur small k	BIBLIOGRAPHY
variable	mathematical bold fraktur small l	

U+1D57A	\mathfrak{O}
U+1D57B	P
U+1D57C	Q
U+1D57D	R
U+1D57E	S
U+1D57F	e
U+1D580	U
U+1D581	Ŋ
U+1D582	233
U+1D583	X
U+1D584	Ŋ
U+1D585	3
U+1D586	a
U+1D587	b
U+1D588	c
U+1D589	ð
U+1D58A	e
U+1D58B	f
U+1D58C	g
U+1D58D	h
U+1D58E	i
U+1D58F	j
U+1D590	ŧ
U+1D591	t

4	6	9	

mathematical bold fraktur small m	INTRODUCTION
mathematical bold fraktur small n	GETTING STARTED
mathematical bold fraktur small o mathematical bold fraktur small p	BUILDING BLOCKS
mathematical bold fraktur small q mathematical bold fraktur small r	KEYWORDS
mathematical bold fraktur small s	INLINE MATH
mathematical bold fraktur small t mathematical bold fraktur small u	DISPLAYED MATH
mathematical bold fraktur small v mathematical bold fraktur small w	EQUATION LABELS
mathematical bold fraktur small x	ENUNCIATIONS
mathematical bold fraktur small y mathematical bold fraktur small z	ILLUSTRATIONS
mathematical sans-serif capital a	MATH FONTS
mathematical sans-serif capital b mathematical sans-serif capital c	MEANINGFUL MATH
mathematical sans-serif capital d mathematical sans-serif capital e	MISCELLANEOUS
mathematical sans-serif capital f	UNICODE SYMBOLS
mathematical sans-serif capital g mathematical sans-serif capital h	SETUPS
mathematical sans-serif capital i mathematical sans-serif capital j	BIBLIOGRAPHY
munomunoui builo born cupitul J	

variable variable

J+1D592	m
J+1D593	n
J+1D594	ø
J+1D595	Þ
J+1D596	q
J+1D597	r
J+1D598	ક્ર
J+1D599	t
J+1D59A	u
J+1D59B	Þ
J+1D59C	w
J+1D59D	¥
J+1D59E	ŋ
J+1D59F	3
J+1D5A0	А
J+1D5A1	В
J+1D5A2	С
J+1D5A3	D
J+1D5A4	Е
J+1D5A5	F
J+1D5A6	G
J+1D5A7	Н
J+1D5A8	I
J+1D5A9	J

INTRODUCTION **GETTING STARTED BUILDING BLOCKS KEYWORDS INLINE MATH DISPLAYED MATH EQUATION LABELS ENUNCIATIONS ILLUSTRATIONS** MATH FONTS **MEANINGFUL MATH** MISCELLANEOUS UNICODE SYMBOLS SETUPS **BIBLIOGRAPHY**

mathematical sans-serif capital k mathematical sans-serif capital l mathematical sans-serif capital m mathematical sans-serif capital n mathematical sans-serif capital o mathematical sans-serif capital p mathematical sans-serif capital q mathematical sans-serif capital r mathematical sans-serif capital s mathematical sans-serif capital t mathematical sans-serif capital u mathematical sans-serif capital v mathematical sans-serif capital w mathematical sans-serif capital x mathematical sans-serif capital y mathematical sans-serif capital z mathematical sans-serif small a mathematical sans-serif small b mathematical sans-serif small c mathematical sans-serif small d mathematical sans-serif small e mathematical sans-serif small f mathematical sans-serif small g mathematical sans-serif small h

variable variable

U+1D5AA	К
U+1D5AB	L
U+1D5AC	М
U+1D5AD	Ν
U+1D5AE	0
U+1D5AF	Р
U+1D5B0	Q
U+1D5B1	R
U+1D5B2	S
U+1D5B3	Т
U+1D5B4	U
U+1D5B5	V
U+1D5B6	W
U+1D5B7	Х
U+1D5B8	Y
U+1D5B9	Z
U+1D5BA	а
U+1D5BB	b
U+1D5BC	С
U+1D5BD	d
U+1D5BE	е
U+1D5BF	f
U+1D5C0	g
U+1D5C1	h

INTRODUCTION
GETTING STARTED
BUILDING BLOCKS
KEYWORDS
INLINE MATH
DISPLAYED MATH
EQUATION LABELS
ENUNCIATIONS
ILLUSTRATIONS
MATH FONTS
MEANINGFUL MATH
MISCELLANEOUS
UNICODE SYMBOLS
SETUPS

BIBLIOGRAPHY

mathematical sans-serif small i mathematical sans-serif small j mathematical sans-serif small k mathematical sans-serif small l mathematical sans-serif small m mathematical sans-serif small n mathematical sans-serif small o mathematical sans-serif small p mathematical sans-serif small q mathematical sans-serif small r mathematical sans-serif small s mathematical sans-serif small t mathematical sans-serif small u mathematical sans-serif small v mathematical sans-serif small w mathematical sans-serif small x mathematical sans-serif small y mathematical sans-serif small z mathematical sans-serif bold capital а mathematical sans-serif bold capital b mathematical sans-serif bold capital

variable variable

С

U+1D5C2	i
U+1D5C3	j
U+1D5C4	k
U+1D5C5	l
U+1D5C6	m
U+1D5C7	n
U+1D5C8	0
U+1D5C9	р
U+1D5CA	q
U+1D5CB	r
U+1D5CC	S
U+1D5CD	t
U+1D5CE	u
U+1D5CF	V
U+1D5D0	w
U+1D5D1	х
U+1D5D2	у
U+1D5D3	Z
U+1D5D4	Α
U+1D5D5	В
U+1D5D6	С

U+1D5D7	D	variable	mathematical sans-serif bold capital	
	_		d	GETTING STARTED
U+1D5D8	E	variable	mathematical sans-serif bold capital e	BUILDING BLOCKS
U+1D5D9	F	variable	mathematical sans-serif bold capital f	KEYWORDS
U+1D5DA	G	variable	mathematical sans-serif bold capital	INLINE MATH
U+1D5DB	н	variable	g mathematical sans-serif bold capital	DISPLAYED MATH
U+1D5DC	1	variable	h mathematical sans-serif bold capital	EQUATION LABELS
			i	ENUNCIATIONS
U+1D5DD	J	variable	mathematical sans-serif bold capital j	ILLUSTRATIONS
U+1D5DE	к	variable	mathematical sans-serif bold capital k	MATH FONTS
U+1D5DF	L	variable	mathematical sans-serif bold capital	MEANINGFUL MATH
U+1D5E0	М	variable	l mathematical sans-serif bold capital	MISCELLANEOUS
			m	UNICODE SYMBOLS
U+1D5E1	Ν	variable	mathematical sans-serif bold capital n	SETUPS
U+1D5E2	0	variable	mathematical sans-serif bold capital o	BIBLIOGRAPHY

	_			INTRODUCTION
U+1D5E3	Ρ	variable	mathematical sans-serif bold capital	
			p	GETTING STARTED
U+1D5E4	Q	variable	mathematical sans-serif bold capital	
			q	BUILDING BLOCKS
U+1D5E5	R	variable	mathematical sans-serif bold capital	KEYWORDS
			r	
U+1D5E6	S	variable	mathematical sans-serif bold capital	INLINE MATH
			s	
U+1D5E7	т	variable	mathematical sans-serif bold capital	DISPLAYED MATH
			t	EQUATION LABELS
U+1D5E8	U	variable	mathematical sans-serif bold capital	EQUATION LABELS
			u	ENUNCIATIONS
U+1D5E9	V	variable	mathematical sans-serif bold capital	
			v	ILLUSTRATIONS
U+1D5EA	W	variable	mathematical sans-serif bold capital	
			W	MATH FONTS
U+1D5EB	х	variable	mathematical sans-serif bold capital	MEANINGFUL MATH
			X (
U+1D5EC	Y	variable	mathematical sans-serif bold capital	MISCELLANEOUS
0.10020	•	variable	y	
U+1D5ED	7	variable	mathematical sans-serif bold capital	UNICODE SYMBOLS
0+1D3LD	2	vallable		SETUPS
U+1D5EE		variable	mathematical sans-serif bold small a	BIBLIOGRAPHY
U+1D5EF	D	variable	mathematical sans-serif bold small b	· · · · · · · · · · · · · · · · · · ·

U+1D5F0 c

EQUATION LABELS

ENUNCIATIONS

ILLUSTRATIONS

MATH FONTS

MEANINGFUL MATH

MISCELLANEOUS

UNICODE SYMBOLS

SETUPS

BIBLIOGRAPHY

mathematical sans-serif bold small c mathematical sans-serif bold small d mathematical sans-serif bold small e mathematical sans-serif bold small f mathematical sans-serif bold small g mathematical sans-serif bold small h mathematical sans-serif bold small i mathematical sans-serif bold small j mathematical sans-serif bold small k mathematical sans-serif bold small l mathematical sans-serif bold small n

mathematical sans-serif bold small n mathematical sans-serif bold small o mathematical sans-serif bold small p mathematical sans-serif bold small q mathematical sans-serif bold small r mathematical sans-serif bold small s mathematical sans-serif bold small t mathematical sans-serif bold small u mathematical sans-serif bold small v mathematical sans-serif bold small w mathematical sans-serif bold small x

variable variable variable variable variable variable variable variable variable variable variable

variable variable variable variable variable variable variable variable variable

variable

U+1D5F1	d
U+1D5F2	е
U+1D5F3	f
U+1D5F4	g
J+1D5F5	h
J+1D5F6	i
J+1D5F7	j
J+1D5F8	k
U+1D5F9	ι
U+1D5FA	m
J+1D5FB	n
U+1D5FB U+1D5FC	n o
J+1D5FC	0
U+1D5FC U+1D5FD	o p
U+1D5FC U+1D5FD U+1D5FE	o p q
U+1D5FC U+1D5FD U+1D5FE U+1D5FF	o p q r
U+1D5FC U+1D5FD U+1D5FE U+1D5FF U+1D5FF	o p q r s
U+1D5FC U+1D5FD U+1D5FE U+1D5FF U+1D5FF U+1D600 U+1D601	o p q r s t
U+1D5FC U+1D5FD U+1D5FE U+1D5FF U+1D600 U+1D601 U+1D602	o p q r s t u

U+1D605 x

J+1D606	v	variable	mathematical sans-serif bold small y	INTRODUCTION
J+1D607	z	variable	mathematical sans-serif bold small z	GETTING STARTED
	A	variable	mathematical sans-serif italic capital	GETTING STARTED
10000		variable	a	BUILDING BLOCKS
U+1D609	В	variable	mathematical sans-serif italic capital	KEYWORDS
J+1D60A	C	variable	mathematical sans-serif italic capital	
UTIDOUA	C	vallable	c	INLINE MATH
U+1D60B	D	variable	mathematical sans-serif italic capital	DISPLAYED MATH
			d	EQUATION LABELS
U+1D60C	Ε	variable	mathematical sans-serif italic capital	EQUATION LABELS
			e	ENUNCIATIONS
U+1D60D	F	variable	mathematical sans-serif italic capital	ILLUSTRATIONS
U+1D60E	G	variable	mathematical sans-serif italic capital	
DTIDUUL	0	vallable	-	MATH FONTS
U+1D60F	Н	variable	g mathematical sans-serif italic capital	MEANINGFUL MATH
			h	
J+1D610	1	variable	mathematical sans-serif italic capital	MISCELLANEOUS
			i	UNICODE SYMBOLS
J+1D611	J	variable	mathematical sans-serif italic capital	
			j	SETUPS
U+1D612	К	variable	mathematical sans-serif italic capital k	BIBLIOGRAPHY

U+1D613	L	variable	mathematical sans-serif italic capital	
			1	GETTING STARTED
U+1D614	Μ	variable	mathematical sans-serif italic capital m	BUILDING BLOCKS
U+1D615	Ν	variable	mathematical sans-serif italic capital	KEYWORDS
U+1D616	0	variable	n mathematical sans-serif italic capital	
U+1D617	Р	variable	o mathematical sans-serif italic capital	DISPLAYED MATH
U+1D618	0	variable	p mathematical sans-serif italic capital	EQUATION LABELS
0.10010	×.	Vulluoio	q	ENUNCIATIONS
U+1D619	R	variable	mathematical sans-serif italic capital r	ILLUSTRATIONS
U+1D61A	S	variable	mathematical sans-serif italic capital	MATH FONTS
U+1D61B	Τ	variable	s mathematical sans-serif italic capital	MEANINGFUL MATH
U+1D61C	U	variable	t mathematical sans-serif italic capital	MISCELLANEOUS
			u	UNICODE SYMBOLS
U+1D61D	V	variable	mathematical sans-serif italic capital v	SETUPS
U+1D61E	W	variable	mathematical sans-serif italic capital w	BIBLIOGRAPHY

U+1D61F	X	variable	mathematical sans-serif italic capital	INTRODUCTION
			X	GETTING STARTED
U+1D620	Y	variable	mathematical sans-serif italic capital	
			у	BUILDING BLOCKS
U+1D621	Ζ	variable	mathematical sans-serif italic capital	KEYWORDS
			Z	KETTORDS
U+1D622	а	variable	mathematical sans-serif italic small	INLINE MATH
			a	
U+1D623	b	variable	mathematical sans-serif italic small	DISPLAYED MATH
			b	EQUATION LABELS
U+1D624	С	variable	mathematical sans-serif italic small	
			c	ENUNCIATIONS
U+1D625	d	variable	mathematical sans-serif italic small	
			d	ILLUSTRATIONS
U+1D626	е	variable	mathematical sans-serif italic small	MATH FONTS
			e	
U+1D627	f	variable	mathematical sans-serif italic small f	MEANINGFUL MATH
U+1D628	g	variable	mathematical sans-serif italic small	
			g	MISCELLANEOUS
U+1D629	h	variable	mathematical sans-serif italic small	UNICODE SYMBOLS
			h	
U+1D62A	i	variable	mathematical sans-serif italic small i	SETUPS
U+1D62B	j	variable	mathematical sans-serif italic small j	
U+1D62C	k	variable	mathematical sans-serif italic small	BIBLIOGRAPHY

			k	INTRODUCTION
U+1D62D	l	variable	mathematical sans-serif italic small l	GETTING STARTED
U+1D62E	т	variable	mathematical sans-serif italic small	
			m	BUILDING BLOCKS
U+1D62F	n	variable	mathematical sans-serif italic small	KEYWORDS
			n	
U+1D630	0	variable	mathematical sans-serif italic small	INLINE MATH
			0	
U+1D631	p	variable	mathematical sans-serif italic small	DISPLAYED MATH
			р	EQUATION LABELS
U+1D632	q	variable	mathematical sans-serif italic small	
			q	ENUNCIATIONS
U+1D633	r	variable	mathematical sans-serif italic small r	
U+1D634	S	variable	mathematical sans-serif italic small s	ILLUSTRATIONS
U+1D635	t	variable	mathematical sans-serif italic small t	MATH FONTS
U+1D636	u	variable	mathematical sans-serif italic small	
			u	MEANINGFUL MATH
U+1D637	V	variable	mathematical sans-serif italic small	
			V	MISCELLANEOUS
U+1D638	W	variable	mathematical sans-serif italic small	UNICODE SYMBOLS
			W	
U+1D639	X	variable	mathematical sans-serif italic small	SETUPS
			Х	BIBLIOGRAPHY
U+1D63A	у	variable	mathematical sans-serif italic small	BIBLIOGRAPHT

			y	INTRODUCTION
U+1D63B	Ζ	variable	mathematical sans-serif italic small	GETTING STARTED
U+1D63C	Α	variable	z mathematical sans-serif bold italic	BUILDING BLOCKS
U+1D63D	В	variable	capital a mathematical sans-serif bold italic	KEYWORDS
U+1D63E	C	variable	capital b mathematical sans-serif bold italic	INLINE MATH
OFIDOSE	C	variable	capital c	DISPLAYED MATH
U+1D63F	D	variable	mathematical sans-serif bold italic capital d	EQUATION LABELS
U+1D640	Ε	variable	mathematical sans-serif bold italic	ENUNCIATIONS
U+1D641	F	variable	capital e mathematical sans-serif bold italic	ILLUSTRATIONS
U+1D642	G	variable	capital f mathematical sans-serif bold italic	MATH FONTS
U+1D643	ц	variable	capital g mathematical sans-serif bold italic	MEANINGFUL MATH
0+10043	п	variable	capital h	MISCELLANEOUS
U+1D644	I	variable	mathematical sans-serif bold italic capital i	UNICODE SYMBOLS
U+1D645	J	variable	mathematical sans-serif bold italic	SETUPS
U+1D646	К	variable	capital j mathematical sans-serif bold italic	BIBLIOGRAPHY

			capital k	INTRODUCTION
U+1D647	L	variable	mathematical sans-serif bold italic capital l	GETTING STARTED
U+1D648	М	variable	mathematical sans-serif bold italic	BUILDING BLOCKS
			capital m	KEYWORDS
U+1D649	Ν	variable	mathematical sans-serif bold italic	
			capital n	INLINE MATH
U+1D64A	0	variable	mathematical sans-serif bold italic	
			capital o	DISPLAYED MATH
U+1D64B	Ρ	variable	mathematical sans-serif bold italic	EQUATION LABELS
			capital p	
U+1D64C	Q	variable	mathematical sans-serif bold italic	ENUNCIATIONS
			capital q	
U+1D64D	R	variable	mathematical sans-serif bold italic	ILLUSTRATIONS
			capital r	MATH FONTS
U+1D64E	S	variable	mathematical sans-serif bold italic	
			capital s	MEANINGFUL MATH
U+1D64F	Τ	variable	mathematical sans-serif bold italic	
			capital t	MISCELLANEOUS
U+1D650	U	variable	mathematical sans-serif bold italic	UNICODE SYMBOLS
			capital u	
U+1D651	V	variable	mathematical sans-serif bold italic	SETUPS
			capital v	
U+1D652	W	variable	mathematical sans-serif bold italic	BIBLIOGRAPHY

			capital w	
U+1D653	X	variable	mathematical sans-serif bold italic capital x	GETTING STARTED
U+1D654	Ŷ	variable	mathematical sans-serif bold italic	BUILDING BLOCKS
U+1D655	Z	variable	capital y mathematical sans-serif bold italic	KEYWORDS
			capital z	INLINE MATH
U+1D656	a	variable	mathematical sans-serif bold italic small a	DISPLAYED MATH
U+1D657	Ь	variable	mathematical sans-serif bold italic small b	EQUATION LABELS
U+1D658	c	variable	mathematical sans-serif bold italic	ENUNCIATIONS
U+1D659	d	variable	small c mathematical sans-serif bold italic	ILLUSTRATIONS
U+1D65A	۵	variable	small d mathematical sans-serif bold italic	MATH FONTS
01 ID05A	C	variable	small e	MEANINGFUL MATH
U+1D65B	f	variable	mathematical sans-serif bold italic small f	MISCELLANEOUS
U+1D65C	g	variable	mathematical sans-serif bold italic small g	UNICODE SYMBOLS
U+1D65D	h	variable	mathematical sans-serif bold italic small h	SETUPS
U+1D65E	i	variable	mathematical sans-serif bold italic	BIBLIOGRAPHY

482

			small i	INTRODUCTION
U+1D65F	j	variable	mathematical sans-serif bold italic	GETTING STARTED
U+1D660	k	variable	small j mathematical sans-serif bold italic	BUILDING BLOCKS
U+1D661	I	variable	small k mathematical sans-serif bold italic	KEYWORDS
			small l	INLINE MATH
U+1D662	m	variable	mathematical sans-serif bold italic small m	DISPLAYED MATH
U+1D663	n	variable	mathematical sans-serif bold italic	EQUATION LABELS
U+1D664	0	variable	small n mathematical sans-serif bold italic	ENUNCIATIONS
U+1D665	p	variable	small o mathematical sans-serif bold italic	ILLUSTRATIONS
0110005	P	variable	small p	MATH FONTS
U+1D666	q	variable	mathematical sans-serif bold italic small q	MEANINGFUL MATH
U+1D667	r	variable	mathematical sans-serif bold italic small r	MISCELLANEOUS
U+1D668	S	variable	mathematical sans-serif bold italic	UNICODE SYMBOLS
U+1D669	t	variable	small s mathematical sans-serif bold italic	SETUPS
U+1D66A	u	variable	small t mathematical sans-serif bold italic	BIBLIOGRAPHY

			small u	INTRODUCTION
U+1D66B	v	variable	mathematical sans-serif bold italic	GETTING STARTED
			small v	
U+1D66C	W	variable	mathematical sans-serif bold italic	BUILDING BLOCKS
			small w	KEYWORDS
U+1D66D	X	variable	mathematical sans-serif bold italic	
			small x	INLINE MATH
U+1D66E	у	variable	mathematical sans-serif bold italic	
			small y	DISPLAYED MATH
U+1D66F	Ζ	variable	mathematical sans-serif bold italic	EQUATION LABELS
			small z	
U+1D670	А	variable	mathematical monospace capital a	ENUNCIATIONS
U+1D671	В	variable	mathematical monospace capital b	
U+1D672	С	variable	mathematical monospace capital c	ILLUSTRATIONS
U+1D673	D	variable	mathematical monospace capital d	MATH FONTS
U+1D674	Е	variable	mathematical monospace capital e	
U+1D675	F	variable	mathematical monospace capital f	MEANINGFUL MATH
U+1D676	G	variable	mathematical monospace capital g	
U+1D677	Н	variable	mathematical monospace capital h	MISCELLANEOUS
U+1D678	I	variable	mathematical monospace capital i	UNICODE SYMBOLS
U+1D679	J	variable	mathematical monospace capital j	
U+1D67A	K	variable	mathematical monospace capital k	SETUPS
U+1D67B	L	variable	mathematical monospace capital l	BIBLIOGRAPHY
U+1D67C	М	variable	mathematical monospace capital m	BIBLIOGRAPHT

BIBLIOGRAPHY

mathematical monospace capital n mathematical monospace capital o mathematical monospace capital p mathematical monospace capital q mathematical monospace capital r mathematical monospace capital s mathematical monospace capital t mathematical monospace capital u mathematical monospace capital v mathematical monospace capital w mathematical monospace capital x mathematical monospace capital y mathematical monospace capital z mathematical monospace small a mathematical monospace small b mathematical monospace small c mathematical monospace small d mathematical monospace small e mathematical monospace small f mathematical monospace small g mathematical monospace small h mathematical monospace small i mathematical monospace small j mathematical monospace small k

variable variable

U+1D67D	Ν
U+1D67E	0
U+1D67F	Ρ
U+1D680	Q
U+1D681	R
U+1D682	S
U+1D683	Т
U+1D684	U
U+1D685	V
U+1D686	W
U+1D687	Х
U+1D688	Y
U+1D689	Ζ
U+1D68A	а
U+1D68B	b
U+1D68C	с
U+1D68D	d
U+1D68E	е
U+1D68F	f
U+1D690	g
U+1D691	h
U+1D692	i
U+1D693	j
U+1D694	k

BIBLIOGRAPHY

mathematical monospace small l mathematical monospace small m mathematical monospace small n mathematical monospace small o mathematical monospace small p mathematical monospace small q mathematical monospace small r mathematical monospace small s mathematical monospace small t mathematical monospace small u mathematical monospace small v mathematical monospace small w mathematical monospace small x mathematical monospace small y mathematical monospace small z mathematical italic small dotless i mathematical italic small dotless j mathematical bold capital alpha mathematical bold capital beta mathematical bold capital gamma mathematical bold capital delta mathematical bold capital epsilon mathematical bold capital zeta mathematical bold capital eta

variable

ordinary

ordinary

variable

variable

variable

variable

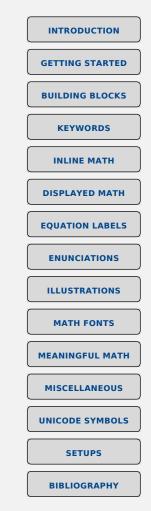
variable

variable

variable

U+1D695	1	
U+1D696	m	
U+1D697	n	
U+1D698	0	
U+1D699	р	
U+1D69A	q	
U+1D69B	r	
U+1D69C	S	
U+1D69D	t	
U+1D69E	u	
U+1D69F	v	
U+1D6A0	W	
U+1D6A1	х	
U+1D6A2	у	
U+1D6A3	Z	
U+1D6A4	l	\imath
U+1D6A5	J	\jmath
U+1D6A8	Α	
U+1D6A9	В	
U+1D6AA	Γ	
U+1D6AB	Δ	
U+1D6AC	Ε	
U+1D6AD	Ζ	
U+1D6AE	н	

U+1D6AF	Θ	variable	mathematical bold capital theta	INTRODUCTION
U+1D6B0	I	variable	mathematical bold capital iota	
U+1D6B1	K	variable	mathematical bold capital lota	GETTING STARTED
		variable		BUILDING BLOCKS
U+1D6B2	Λ		mathematical bold capital lamda	BUILDING BLOCKS
U+1D6B3	Μ	variable	mathematical bold capital mu	KEYWORDS
U+1D6B4	Ν	variable	mathematical bold capital nu	
U+1D6B5	Ξ	variable	mathematical bold capital xi	INLINE MATH
U+1D6B6	0	variable	mathematical bold capital omicron	
U+1D6B7	П	variable	mathematical bold capital pi	DISPLAYED MATH
U+1D6B8	Р	variable	mathematical bold capital rho	EQUATION LABELS
U+1D6B9	θ	variable	mathematical bold capital	
			theta symbol	ENUNCIATIONS
U+1D6BA	Σ	variable	mathematical bold capital sigma	
U+1D6BB	Т	variable	mathematical bold capital tau	ILLUSTRATIONS
U+1D6BC	Y	variable	mathematical bold capital upsilon	MATH FONTS
U+1D6BD	Φ	variable	mathematical bold capital phi	
U+1D6BE	X	variable	mathematical bold capital chi	MEANINGFUL MATH
U+1D6BF	Ψ	variable	mathematical bold capital psi	
U+1D6C0	Ω	variable	mathematical bold capital omega	MISCELLANEOUS
U+1D6C1	∇	differential	mathematical bold nabla	UNICODE SYMBOLS
U+1D6C2	α	variable	mathematical bold small alpha	
U+1D6C3	β	variable	mathematical bold small beta	SETUPS
U+1D6C4	γ	variable	mathematical bold small gamma	
U+1D6C5	δ	variable	mathematical bold small delta	BIBLIOGRAPHY


				INTRODUCTION
U+1D6C6	ε	variable	mathematical bold small epsilon	INTRODUCTION
U+1D6C7	ζ	variable	mathematical bold small zeta	GETTING STARTED
U+1D6C8	η	variable	mathematical bold small eta	
U+1D6C9	θ	variable	mathematical bold small theta	BUILDING BLOCKS
U+1D6CA	ι	variable	mathematical bold small iota	KEYWORDS
U+1D6CB	κ	variable	mathematical bold small kappa	RETWORDS
U+1D6CC	λ	variable	mathematical bold small lamda	INLINE MATH
U+1D6CD	μ	variable	mathematical bold small mu	
U+1D6CE	ν	variable	mathematical bold small nu	DISPLAYED MATH
U+1D6CF	ξ	variable	mathematical bold small xi	EQUATION LABELS
U+1D6D0	0	variable	mathematical bold small omicron	
U+1D6D1	π	variable	mathematical bold small pi	ENUNCIATIONS
U+1D6D2	ρ	variable	mathematical bold small rho	
U+1D6D3	ς	variable	mathematical bold small final sigma	ILLUSTRATIONS
U+1D6D4	σ	variable	mathematical bold small sigma	MATH FONTS
U+1D6D5	τ	variable	mathematical bold small tau	
U+1D6D6	υ	variable	mathematical bold small upsilon	MEANINGFUL MATH
U+1D6D7	φ	variable	mathematical bold small phi	
U+1D6D8	X	variable	mathematical bold small chi	MISCELLANEOUS
U+1D6D9	ψ	variable	mathematical bold small psi	UNICODE SYMBOLS
U+1D6DA	ω	variable	mathematical bold small omega	
U+1D6DB	9	differential	mathematical bold partial differen-	SETUPS
			tial	BIBLIOGRAPHY
U+1D6DC	e	variable	mathematical bold epsilon symbol	BIBLIUGRAPHT

S

.s

U+1D6DD	୫	variable	ma
U+1D6DE	x	variable	ma
U+1D6DF	φ	variable	ma
U+1D6E0	ę	variable	ma
U+1D6E1	ω	variable	ma
U+1D6E2	A	variable	ma
U+1D6E3	В	variable	ma
U+1D6E4	Γ	variable	ma
U+1D6E5	Δ	variable	ma
U+1D6E6	E	variable	ma
U+1D6E7	Ζ	variable	ma
U+1D6E8	H	variable	ma
U+1D6E9	Θ	variable	ma
U+1D6EA	Ι	variable	ma
U+1D6EB	Κ	variable	ma
U+1D6EC	Λ	variable	ma
U+1D6ED	M	variable	ma
U+1D6EE	N	variable	ma
U+1D6EF	Ξ	variable	ma
U+1D6F0	0	variable	ma
U+1D6F1	П	variable	ma
U+1D6F2	Р	variable	ma
U+1D6F3	θ	variable	ma
			~ ~ ~ ~

athematical bold theta symbol athematical bold kappa symbol athematical bold phi symbol athematical bold rho symbol athematical bold pi symbol athematical italic capital alpha athematical italic capital beta athematical italic capital gamma athematical italic capital delta athematical italic capital epsilon athematical italic capital zeta athematical italic capital eta athematical italic capital theta athematical italic capital iota athematical italic capital kappa athematical italic capital lamda athematical italic capital mu athematical italic capital nu athematical italic capital xi athematical italic capital omicron athematical italic capital pi athematical italic capital rho athematical italic capital theta symbol

	$\mathbf{\nabla}$		mariable	mathematical italia conital sigma	INTRODUCTION
U+1D6F4	Σ		variable	mathematical italic capital sigma	
U+1D6F5	Т		variable	mathematical italic capital tau	GETTING STARTED
U+1D6F6	Ŷ		variable	mathematical italic capital upsilon	
U+1D6F7	Φ		variable	mathematical italic capital phi	BUILDING BLOCKS
U+1D6F8	X		variable	mathematical italic capital chi	KEYWORDS
U+1D6F9	Ψ		variable	mathematical italic capital psi	
U+1D6FA	Ω		variable	mathematical italic capital omega	INLINE MATH
U+1D6FB	∇		differential	mathematical italic nabla	
U+1D6FC	α		variable	mathematical italic small alpha	DISPLAYED MATH
U+1D6FD	β		variable	mathematical italic small beta	EQUATION LABELS
U+1D6FE	γ		variable	mathematical italic small gamma	
U+1D6FF	δ		variable	mathematical italic small delta	ENUNCIATIONS
U+1D700	ε		variable	mathematical italic small epsilon	
U+1D701	ζ		variable	mathematical italic small zeta	ILLUSTRATIONS
U+1D702	η		variable	mathematical italic small eta	MATH FONTS
U+1D703	θ		variable	mathematical italic small theta	
U+1D704	ι		variable	mathematical italic small iota	MEANINGFUL MATH
U+1D705	κ		variable	mathematical italic small kappa	
U+1D706	λ		variable	mathematical italic small lamda	MISCELLANEOUS
U+1D707	μ		variable	mathematical italic small mu	UNICODE SYMBOLS
U+1D708	ν		variable	mathematical italic small nu	
U+1D709	ξ		variable	mathematical italic small xi	SETUPS
U+1D70A	0		variable	mathematical italic small omicron	
U+1D70B	π	\mathpiitalicshape	variable	mathematical italic small pi	BIBLIOGRAPHY
				-	

U+10700çvariablemathematical italic small fi- nal sigmaGETTING STARTEDU+1070F σ variablemathematical italic small sigmaBUILDING BLOCKSU+1070F τ variablemathematical italic small sigmaBUILDING BLOCKSU+10710 v variablemathematical italic small tauKEYWORDSU+10711 ϕ variablemathematical italic small upsilonINLINE MATHU+10712 χ variablemathematical italic small phiINLINE MATHU+10713 ψ variablemathematical italic small opeiaDISPLAYED MATHU+10714 ω variablemathematical italic small omegaEQUATION LABELSU+10715 ∂ variablemathematical italic partial differentialINLINE MATHU+10716 ϵ variablemathematical italic small omegaEQUATION LABELSU+10716 ϵ variablemathematical italic partial differentialINLUSTRATIONSU+10716 ϕ variablemathematical italic heta symbolMATH FONTSU+10717 ϑ varthetavariablemathematical italic heta symbolMATH FONTSU+10718 κ varrhovariablemathematical italic pi symbolMATH FONTSU+10717 θ varrhovariablemathematical italic pi symbolMISCELLANEOUSU+10718 κ variablemathematical italic paital betaMISCELLANEOUSU+10718 μ variablemathematical bold italic capital betaSETUPS <td< th=""><th>U+1D70C</th><th>ρ</th><th></th><th>variable</th><th>mathematical italic small rho</th><th>INTRODUCTION</th></td<>	U+1D70C	ρ		variable	mathematical italic small rho	INTRODUCTION
U+1070Fτvariablemathematical italic small tauKEYWORDSU+10710vvariablemathematical italic small upsilonINLINE MATHU+10711φvariablemathematical italic small phiINLINE MATHU+10712χvariablemathematical italic small psiDISPLAYED MATHU+10713ψvariablemathematical italic small psiDISPLAYED MATHU+10714ωvariablemathematical italic small omegaEQUATION LABELSU+10715∂differentialmathematical italic partial differentialENUNCIATIONSU+10716ϵvariablemathematical italic heta symbolMATHU+10717𝔅variablemathematical italic heta symbolMATH FONTSU+10718𝔅variablemathematical italic pi symbolMATH FONTSU+10714𝔅variablemathematical italic pi symbolMATH FONTSU+10715𝔅variablemathematical italic pi symbolMATH FONTSU+10718𝔅variablemathematical italic pi symbolMATH FONTSU+10716𝔅variablemathematical italic pi symbolMISCELLANEOUSU+10716𝔅variablemathematical italic capi- tal alphaUNICODE SYMBOLSU+10711𝔅variablemathematical bold italic capi- tal agammaSETUPSBIBLIOGRAPHYvariablemathematical bold italic capi- tal gammaBIBLIOGRAPHY	U+1D70D	5		variable		GETTING STARTED
U+1D710υvariablemathematical italic small upsilonKEYWORDSU+1D711φvariablemathematical italic small upsilonINLINE MATHU+1D712χvariablemathematical italic small phiINLINE MATHU+1D713ψvariablemathematical italic small psiDISPLAYED MATHU+1D714ωvariablemathematical italic small omegaEQUATION LABELSU+1D715δdifferentialmathematical italic psilon symbolEQUATION LABELSU+1D716εvariablemathematical italic theta symbolILLUSTRATIONSU+1D717ψvarkappavariablemathematical italic phi symbolMATH FONTSU+1D718xvarkappavariablemathematical italic pi symbolMATH FONTSU+1D71Aφvarrhovariablemathematical italic pi symbolMATH FONTSU+1D71BTvariablemathematical italic pi symbolMISCELLANEOUSU+1D71DBvariablemathematical bold italic capital betaSETUPSU+1D71EΓvariablemathematical bold italic capital betaSETUPSBIBLIOGRAPHYtal gammaBIBLIOGRAPHYBIBLIOGRAPHY	U+1D70E	σ		variable	mathematical italic small sigma	BUILDING BLOCKS
U+1D710 v variable mathematical italic small upsilon U+1D711 φ variable mathematical italic small phi INLINE MATH U+1D712 χ variable mathematical italic small phi DISPLAYED MATH U+1D713 ψ variable mathematical italic small psi DISPLAYED MATH U+1D714 ω variable mathematical italic small omega EQUATION LABELS U+1D715 ∂ differential mathematical italic partial differential ENUNCIATIONS U+1D716 c variable mathematical italic theta symbol ILLUSTRATIONS U+1D718 x varkappa variable mathematical italic phi symbol MATH FONTS U+1D718 varkappa variable mathematical italic pi symbol MATH FONTS U+1D718 varrho variable mathematical italic pi symbol MISCELLANEOUS U+1D710 B variable mathematical italic pi symbol MISCELLANEOUS U+1D7110 B variable mathematical bold italic capital beta SETUPS tal alpha variable mathematical bold italic capital beta <td< td=""><td>U+1D70F</td><td>τ</td><td></td><td>variable</td><td>mathematical italic small tau</td><td>KEYWORDS</td></td<>	U+1D70F	τ		variable	mathematical italic small tau	KEYWORDS
U+1D712 χ variable mathematical italic small chi DISPLAYED MATH U+1D713 ψ variable mathematical italic small psi DISPLAYED MATH U+1D714 ω variable mathematical italic small omega EQUATION LABELS U+1D715 ∂ differential mathematical italic epsilon symbol EQUATION LABELS U+1D716 ε variable mathematical italic theta symbol ILLUSTRATIONS U+1D717 ϑ \vartheta variable mathematical italic heta symbol ILLUSTRATIONS U+1D718 x \vartheta variable mathematical italic pi symbol MATH FONTS U+1D718 χ \varrho variable mathematical italic pi symbol MATH FONTS U+1D718 ω varrho variable mathematical italic pi symbol MISCELLANEOUS U+1D710 B variable mathematical bold italic capital beta MISCELLANEOUS U+1D7110 F variable mathematical bold italic capital beta SETUPS U+1D7112 F variable mathematical bold italic capital beta SETUPS H	U+1D710	υ		variable	mathematical italic small upsilon	KETWORDS
U+1D713ψvariablemathematical italic small psiDISPLAYED MATHU+1D714ωvariablemathematical italic small omegaEQUATION LABELSU+1D715∂differentialmathematical italic partial differentialEQUATION LABELSU+1D716ϵvariablemathematical italic psilon symbolILLUSTRATIONSU+1D717ϑ\varthetavariablemathematical italic theta symbolILLUSTRATIONSU+1D718x\varthetavariablemathematical italic pi symbolMATH FONTSU+1D719ψvariablemathematical italic rho symbolMATH FONTSU+1D718warrhovariablemathematical italic pi symbolMATH FONTSU+1D716Kvarrhovariablemathematical italic pi symbolMATH FONTSU+1D718Warrhovariablemathematical italic pi symbolMISCELLANEOUSU+1D710Bvariablemathematical bold italic capi- tal alphaSETUPSU+1D7112Γvariablemathematical bold italic capi- tal gammaSETUPS	U+1D711	arphi		variable	mathematical italic small phi	INLINE MATH
0+1D713 φ variable mathematical italic small psi EQUATION LABELS 0+1D714 ω variable mathematical italic small omega EQUATION LABELS 0+1D715 ∂ differential mathematical italic partial differential ENUNCIATIONS 0+1D716 € variable mathematical italic partial differential ENUNCIATIONS 0+1D716 € variable mathematical italic partial differential ENUNCIATIONS 0+1D716 € variable mathematical italic partial differential ENUNCIATIONS 0+1D717 9 \vartheta variable mathematical italic partial differential ENUNCIATIONS 0+1D718 x \varkappa variable mathematical italic phi symbol MATH FONTS 0+1D714 Q \varrho variable mathematical italic pi symbol MEANINGFUL MATH 0+1D715 $\overline{\sigma}$ ordinary mathematical bold italic capi- Iniccellaneous 0+1D716 F variable mathematical bold italic capi- Iniccellaneous 0+1D715 B variable mathematical bold italic capi- Iniccellaneous	U+1D712	χ		variable	mathematical italic small chi	
U+1D715∂differentialmathematical italic partial differentialEQUATION LABELSU+1D716€variablemathematical italic partial differentialENUNCIATIONSU+1D7179\varthetavariablemathematical italic theta symbolILLUSTRATIONSU+1D718x\varkappavariablemathematical italic kappa symbolMATH FONTSU+1D719φvarrhovariablemathematical italic phi symbolMATH FONTSU+1D71Aç\varrhovariablemathematical italic pi symbolMEANINGFUL MATHU+1D71B ϖ ordinarymathematical italic pi symbolMISCELLANEOUSU+1D71CAvariablemathematical bold italic capital betaUNICODE SYMBOLSU+1D71DBvariablemathematical bold italic capital betaSETUPSU+1D71EΓvariablemathematical bold italic capital betaSETUPSBIBLIOSRAPHYBIBLIOSRAPHYBIBLIOSRAPHYBIBLIOSRAPHY	U+1D713	ψ		variable	mathematical italic small psi	DISPLAYED MATH
U+1D715∂differentialmathematical italic partial differentialENUNCIATIONSU+1D716€variablemathematical italic epsilon symbolILLUSTRATIONSU+1D717Ŷ\varthetavariablemathematical italic theta symbolILLUSTRATIONSU+1D718×\varkappavariablemathematical italic theta symbolMATH FONTSU+1D719Øvariablemathematical italic phi symbolMATH FONTSU+1D71AØvarrhovariablemathematical italic pi symbolMATH FONTSU+1D71BØvarrhovariablemathematical italic capi symbolMISCELLANEOUSU+1D71CAvariablemathematical bold italic capi- tal alphaUNICODE SYMBOLSU+1D71DBvariablemathematical bold italic capi- tal gammaSETUPSBIBLIOGRAPHYtal gammaBIBLIOGRAPHY	U+1D714	ω		variable	mathematical italic small omega	EQUATION LABELS
U+1D716εvariablemathematical italic epsilon symbolU+1D717θ\varthetavariablemathematical italic theta symbolU+1D718x\varkappavariablemathematical italic kappa symbolU+1D719φvariablemathematical italic phi symbolMATH FONTSU+1D714φ\varrhovariablemathematical italic phi symbolMEANINGFUL MATHU+1D718 ϖ ordinarymathematical italic pi symbolMISCELLANEOUSU+1D71CAvariablemathematical bold italic capi- tal alphaMISCELLANEOUSU+1D71DBvariablemathematical bold italic capi- tal gammaSETUPSBIBLIOGRAPHYtal gammaBIBLIOGRAPHYBIBLIOGRAPHY	U+1D715	д		differential	mathematical italic partial differen-	
U+1D717ϑ\varthetavariablemathematical italic theta symbolILLUSTRATIONSU+1D718×\varkappavariablemathematical italic theta symbolMATH FONTSU+1D719ψvariablemathematical italic phi symbolMATH FONTSU+1D71Aç\varrhovariablemathematical italic pi symbolMEANINGFUL MATHU+1D71Bϖordinarymathematical italic pi symbolMISCELLANEOUSU+1D71CAvariablemathematical bold italic capi- tal alphaMISCELLANEOUSU+1D71DBvariablemathematical bold italic capi- tal gammaSETUPSBIBLIOGRAPHYtal gammaBIBLIOGRAPHY					tial	ENUNCIATIONS
U+1D/179\varthetavariablemathematical italic theta symbolU+1D718x\varkappavariablemathematical italic kappa symbolU+1D719φvariablemathematical italic phi symbolU+1D714ç\varrhovariablemathematical italic phi symbolU+1D718 ϖ ordinarymathematical italic pi symbolMEANINGFUL MATHU+1D718 ϖ ordinarymathematical italic pi symbolMISCELLANEOUSU+1D71CAvariablemathematical bold italic capi- tal alphaUNICODE SYMBOLSU+1D71DBvariablemathematical bold italic capi- tal gammaSETUPSBIBLIOGRAPHYtal gammaBIBLIOGRAPHY	U+1D716	e		variable	mathematical italic epsilon symbol	
U+1D719 φ variable mathematical italic phi symbol U+1D71A φ \varrho variable mathematical italic phi symbol U+1D71B ϖ ordinary mathematical italic pi symbol MEANINGFUL MATH U+1D71C A variable mathematical italic capi- MISCELLANEOUS U+1D71D B variable mathematical bold italic capital beta UNICODE SYMBOLS U+1D71E Γ variable mathematical bold italic capi- SETUPS tal gamma BIBLIOGRAPHY BIBLIOGRAPHY	U+1D717	θ	\vartheta	variable	mathematical italic theta symbol	ILLUSTRATIONS
U+1D71A Q \varrho variable mathematical italic rho symbol U+1D71B \varrho ordinary mathematical italic pi symbol MEANINGFUL MATH U+1D71B \varrho ordinary mathematical italic pi symbol MISCELLANEOUS U+1D71C A variable mathematical bold italic capi- Imathematical bold italic capi- U+1D71D B variable mathematical bold italic capital beta SETUPS U+1D71E Imathematical bold italic capi- Imathematical bold italic capi- SETUPS Imathematical bold italic capi- Imathematical bold italic capi- Imathematical bold italic capi- Imathematical bold italic capi- U+1D71E Imathematical bold italic capi- Imathematical bold italic capi- Imathematical bold italic capi- Imathematical bold italic capi- Imathematical bold italic capi- Imathematical bold italic capi- Imathematical bold italic capi- Imathematical bold italic capi- Imathematical bold italic capi- Imathematical bold italic capi- Imathematical bold italic capi- Imathematical bold italic capi- Imathematical bold italic capi- Imathematical bold italic capi- Imathematical bold italic capi- Imathematical bold italic capi-	U+1D718	к	\varkappa	variable	mathematical italic kappa symbol	MATH FONTS
U+1D71Bωordinarymathematical italic pi symbolMISCELLANEOUSU+1D71CAvariablemathematical bold italic capi- tal alphaUNICODE SYMBOLSU+1D71DBvariablemathematical bold italic capital beta mathematical bold italic capi- tal gammaSETUPSBIBLIOGRAPHYBIBLIOGRAPHY	U+1D719	ϕ		variable	mathematical italic phi symbol	
U+1D71CAvariablemathematical bold italic capi- tal alphaMISCELLANEOUSU+1D71DBvariablemathematical bold italic capital betaUNICODE SYMBOLSU+1D71EIvariablemathematical bold italic capi- tal gammaSETUPSBIBLIOGRAPHYBIBLIOGRAPHY	U+1D71A	ę	\varrho	variable	mathematical italic rho symbol	MEANINGFUL MATH
U+1D71CAvariablemathematical bold italic capi- tal alphaUNICODE SYMBOLSU+1D71DBvariablemathematical bold italic capital betaSETUPSU+1D71EIvariablemathematical bold italic capi- tal gammaSETUPS	U+1D71B	ω		ordinary	mathematical italic pi symbol	
U+1D71DBvariablemathematical bold italic capital betaU+1D71EΓvariablemathematical bold italic capi- tal gammaBIBLIOGRAPHY	U+1D71C	A		variable	mathematical bold italic capi-	MISCELLANEOUS
U+1D71E Γ variable mathematical bold italic capi- tal gamma BIBLIOGRAPHY					tal alpha	UNICODE SYMBOLS
tal gamma	U+1D71D	B		variable	mathematical bold italic capital beta	
BIBLIOGRAPHY	U+1D71E	Γ		variable	mathematical bold italic capi-	SETUPS
U+1D71F Δ variable mathematical bold italic capi-					tal gamma	BIBLIOGRAPHY
	U+1D71F	Δ		variable	mathematical bold italic capi-	

			tal delta	INTRODUCTION
U+1D720	Ε	variable	mathematical bold italic capi-	GETTING STARTED
			tal epsilon	
U+1D721	Ζ	variable	mathematical bold italic capital zeta	BUILDING BLOCKS
U+1D722	Н	variable	mathematical bold italic capital eta	KEYWORDS
U+1D723	Θ	variable	mathematical bold italic capi-	RETWORDS
			tal theta	INLINE MATH
U+1D724	Ι	variable	mathematical bold italic capital iota	
U+1D725	K	variable	mathematical bold italic capi-	DISPLAYED MATH
			tal kappa	EQUATION LABELS
U+1D726	Λ	variable	mathematical bold italic capi-	
			tal lamda	ENUNCIATIONS
U+1D727	M	variable	mathematical bold italic capital mu	
U+1D728	N	variable	mathematical bold italic capital nu	ILLUSTRATIONS
U+1D729	Ξ	variable	mathematical bold italic capital xi	MATH FONTS
U+1D72A	0	variable	mathematical bold italic capi-	
			tal omicron	MEANINGFUL MATH
U+1D72B	Π	variable	mathematical bold italic capital pi	
U+1D72C	Р	variable	mathematical bold italic capital rho	MISCELLANEOUS
U+1D72D	θ	variable	mathematical bold italic capital	UNICODE SYMBOLS
			theta symbol	
U+1D72E	Σ	variable	mathematical bold italic capi-	SETUPS
			tal sigma	
U+1D72F	T	variable	mathematical bold italic capital tau	BIBLIOGRAPHY

U+1D730	r	variable	mathematical bold italic capi-	INTRODUCTION
			tal upsilon	GETTING STARTED
U+1D731	Φ	variable	mathematical bold italic capital phi	
U+1D732	X	variable	mathematical bold italic capital chi	BUILDING BLOCKS
U+1D733	Ψ	variable	mathematical bold italic capital psi	KEYWORDS
U+1D734	Ω	variable	mathematical bold italic capi-	KETWORDS
			tal omega	INLINE MATH
U+1D735	∇	differential	mathematical bold italic nabla	
U+1D736	α	variable	mathematical bold italic small alpha	DISPLAYED MATH
U+1D737	β	variable	mathematical bold italic small beta	EQUATION LABELS
U+1D738	γ	variable	mathematical bold italic small	
			gamma	ENUNCIATIONS
U+1D739	δ	variable	mathematical bold italic small delta	
U+1D73A	ε	variable	mathematical bold italic small	ILLUSTRATIONS
			epsilon	MATH FONTS
U+1D73B	ζ	variable	mathematical bold italic small zeta	
U+1D73C	ŋ	variable	mathematical bold italic small eta	MEANINGFUL MATH
U+1D73D	θ	variable	mathematical bold italic small theta	
U+1D73E	ι	variable	mathematical bold italic small iota	MISCELLANEOUS
U+1D73F	κ	variable	mathematical bold italic small	UNICODE SYMBOLS
			kappa	
U+1D740	λ	variable	mathematical bold italic small	SETUPS
			lamda	
U+1D741	μ	variable	mathematical bold italic small mu	BIBLIOGRAPHY
	,			

11.10740				INTRODUCTION
U+1D742	ν	variable	mathematical bold italic small nu	
U+1D743	£ S	variable	mathematical bold italic small xi	GETTING STARTED
U+1D744	0	variable	mathematical bold italic small	
			omicron	BUILDING BLOCKS
U+1D745	π	variable	mathematical bold italic small pi	KEYWORDS
U+1D746	ρ	variable	mathematical bold italic small rho	RETWORDS
U+1D747	5	variable	mathematical bold italic small final	INLINE MATH
			sigma	
U+1D748	σ	variable	mathematical bold italic small sigma	DISPLAYED MATH
U+1D749	τ	variable	mathematical bold italic small tau	EQUATION LABELS
U+1D74A	υ	variable	mathematical bold italic small	EQUATION LABELS
			upsilon	ENUNCIATIONS
U+1D74B	arphi	variable	mathematical bold italic small phi	
U+1D74C	X	variable	mathematical bold italic small chi	ILLUSTRATIONS
U+1D74D	ψ	variable	mathematical bold italic small psi	MATH FONTS
U+1D74E	ω	variable	mathematical bold italic small	
			omega	MEANINGFUL MATH
U+1D74F	9	differential	mathematical bold italic par-	
			tial differential	MISCELLANEOUS
U+1D750	ε	variable	mathematical bold italic ep-	UNICODE SYMBOLS
			silon symbol	
U+1D751	Ð	variable	mathematical bold italic theta	SETUPS
			symbol	
U+1D752	x	variable	mathematical bold italic kappa	BIBLIOGRAPHY
			rr-	

	n	E	
-4	9	9	

			symbol	INTRODUCTION
U+1D753	ϕ	variable	mathematical bold italic phi symbol	GETTING STARTED
U+1D754	ç	variable	mathematical bold italic rho symbol	
U+1D755	$\overline{\omega}$	variable	mathematical bold italic pi symbol	BUILDING BLOCKS
U+1D756	Α	variable	mathematical sans-serif bold capital alpha	KEYWORDS
U+1D757	В	variable	mathematical sans-serif bold capital beta	
U+1D758	г	variable	mathematical sans-serif bold capital	DISPLAYED MATH
U+1D759	٨	variable	gamma mathematical sans-serif bold capital	EQUATION LABELS
0+10733	Δ	Variable	delta	ENUNCIATIONS
U+1D75A	E	variable	mathematical sans-serif bold capital epsilon	ILLUSTRATIONS
U+1D75B	Z	variable	mathematical sans-serif bold capital zeta	MATH FONTS
U+1D75C	н	variable	mathematical sans-serif bold capital	MEANINGFUL MATH
U+1D75D	Θ	variable	eta mathematical sans-serif bold capital	MISCELLANEOUS
U+1D75E		variable	theta	UNICODE SYMBOLS
0+1D/2E	1	vallable	mathematical sans-serif bold capital iota	SETUPS
U+1D75F	К	variable	mathematical sans-serif bold capital kappa	BIBLIOGRAPHY

U+1D760	٨	variable	mathematical sans-serif bold capital	INTRODUCTION
			lamda	GETTING STARTED
U+1D761	Μ	variable	mathematical sans-serif bold capital	
			mu	BUILDING BLOCKS
U+1D762	Ν	variable	mathematical sans-serif bold capital	KEYWORDS
			nu	
U+1D763	Ξ	variable	mathematical sans-serif bold capital	INLINE MATH
			xi	
U+1D764	0	variable	mathematical sans-serif bold capital	DISPLAYED MATH
			omicron	
U+1D765	п	variable	mathematical sans-serif bold capital	EQUATION LABELS
0.10,00		variable	pi	ENUNCIATIONS
U+1D766	P	variable	mathematical sans-serif bold capital	
0110700	•	variable	rho	ILLUSTRATIONS
U+1D767	θ	variable	mathematical sans-serif bold capital	MATH FONTS
			theta symbol	
U+1D768	Σ	variable	mathematical sans-serif bold capital	MEANINGFUL MATH
			sigma	
U+1D769	т	variable	mathematical sans-serif bold capital	MISCELLANEOUS
			tau	UNICODE SYMBOLS
U+1D76A	v	variable	mathematical sans-serif bold capital	UNICODE STMBOLS
0+1D/0A		vallaule	upsilon	SETUPS
U+1D76B	Φ	variable	mathematical sans-serif bold capital	
0110700	*	variable	phi	BIBLIOGRAPHY

U+1D76C	Х	variable	mathematical sans-serif bold capital	INTRODUCTION
			chi	GETTING STARTED
U+1D76D	Ψ	variable	mathematical sans-serif bold capital	
			psi	BUILDING BLOCKS
U+1D76E	Ω	variable	mathematical sans-serif bold capital omega	KEYWORDS
U+1D76F	Δ	differential	mathematical sans-serif bold nabla	INLINE MATH
U+1D770	α	variable	mathematical sans-serif bold small	
			alpha	DISPLAYED MATH
U+1D771	β	variable	mathematical sans-serif bold small	EQUATION LABELS
			beta	
U+1D772	γ	variable	mathematical sans-serif bold small	ENUNCIATIONS
			gamma	
U+1D773	δ	variable	mathematical sans-serif bold small	ILLUSTRATIONS
			delta	MATH FONTS
U+1D774	ε	variable	mathematical sans-serif bold small	
			epsilon	MEANINGFUL MATH
U+1D775	ζ	variable	mathematical sans-serif bold small	
			zeta	MISCELLANEOUS
U+1D776	η	variable	mathematical sans-serif bold small	UNICODE SYMBOLS
			eta	
U+1D777	θ	variable	mathematical sans-serif bold small	SETUPS
			theta	
U+1D778	ι	variable	mathematical sans-serif bold small	BIBLIOGRAPHY

			iota	INTRODUCTION
U+1D779	к	variable	mathematical sans-serif bold small	GETTING STARTED
U+1D77A	λ	variable	kappa mathematical sans-serif bold small	BUILDING BLOCKS
U+1D77B		variable	lamda mathematical sans-serif bold small	KEYWORDS
0+10778	٣	variable	mu	INLINE MATH
U+1D77C	ν	variable	mathematical sans-serif bold small nu	DISPLAYED MATH
U+1D77D	ξ	variable	mathematical sans-serif bold small	EQUATION LABELS
U+1D77E	0	variable	xi mathematical sans-serif bold small	ENUNCIATIONS
U+1D77F	π	variable	omicron mathematical sans-serif bold small	ILLUSTRATIONS
1.15700			pi	MATH FONTS
U+1D780	ρ	variable	mathematical sans-serif bold small rho	MEANINGFUL MATH
U+1D781	ς	variable	mathematical sans-serif bold small final sigma	MISCELLANEOUS
U+1D782	σ	variable	mathematical sans-serif bold small	UNICODE SYMBOLS
U+1D783	τ	variable	sigma mathematical sans-serif bold small	SETUPS
U+1D784	υ	variable	tau mathematical sans-serif bold small	BIBLIOGRAPHY

			upsilon	INTRODUCTION
U+1D785	φ	variable	mathematical sans-serif bold small	GETTING STARTED
			phi	
U+1D786	Х	variable	mathematical sans-serif bold small	BUILDING BLOCKS
			chi	KEYWORDS
U+1D787	ψ	variable	mathematical sans-serif bold small	
			psi	INLINE MATH
U+1D788	ω	variable	mathematical sans-serif bold small	
			omega	DISPLAYED MATH
U+1D789	6	differential	mathematical sans-serif bold partial	EQUATION LABELS
			differential	
U+1D78A	E	variable	mathematical sans-serif bold epsilon	ENUNCIATIONS
			symbol	
U+1D78B	9	variable	mathematical sans-serif bold theta	ILLUSTRATIONS
			symbol	MATH FONTS
U+1D78C	×	variable	mathematical sans-serif bold kappa	
			symbol	MEANINGFUL MATH
U+1D78D	φ	variable	mathematical sans-serif bold phi	MISCELLANEOUS
			symbol	
U+1D78E	ę	variable	mathematical sans-serif bold rho	UNICODE SYMBOLS
			symbol	
U+1D78F	ω	variable	mathematical sans-serif bold	SETUPS
			pi symbol	BIBLIOGRAPHY
U+1D790	Α	variable	mathematical sans-serif bold italic	

U+1D791 **B**

U+1D792 **/**

U+1D793 🛽 🖉

U+1D794 **E**

U+1D795 **Z**

U+1D796 **H**

U+1D797 *O*

U+1D798 **/**

U+1D799 **K**

U+1D79A **/**

U+1D79B **M**

U+1D79C **N**

	capital alpha	INTRODUCTION
variable	mathematical sans-serif bold italic	GETTING STARTED
	capital beta	
variable	mathematical sans-serif bold italic	BUILDING BLOCKS
	capital gamma	KEYWORDS
variable	mathematical sans-serif bold italic	
	capital delta	INLINE MATH
variable	mathematical sans-serif bold italic	DISPLAYED MATH
	capital epsilon	
variable	mathematical sans-serif bold italic	EQUATION LABELS
	capital zeta	
variable	mathematical sans-serif bold italic	ENUNCIATIONS
	capital eta	ILLUSTRATIONS
variable	mathematical sans-serif bold italic	
variable	capital theta mathematical sans-serif bold italic	MATH FONTS
variable	capital iota	MEANINGFUL MATH
variable	mathematical sans-serif bold italic	
variable	capital kappa	MISCELLANEOUS
variable	mathematical sans-serif bold italic	
variable	capital lamda	UNICODE SYMBOLS
variable	mathematical sans-serif bold italic	SETUPS
	capital mu	
variable	mathematical sans-serif bold italic	BIBLIOGRAPHY

500

			capital nu	INTRODUCTION
U+1D79D	Ξ	variable	mathematical sans-serif bold italic	GETTING STARTED
U+1D79E	0	variable	capital xi mathematical sans-serif bold italic	BUILDING BLOCKS
U+1D79F	п	variable	capital omicron mathematical sans-serif bold italic	KEYWORDS
1.15740			capital pi	INLINE MATH
U+1D7A0	Р	variable	mathematical sans-serif bold italic capital rho	DISPLAYED MATH
U+1D7A1	θ	variable	mathematical sans-serif bold italic capital theta symbol	EQUATION LABELS
U+1D7A2	Σ	variable	mathematical sans-serif bold italic	ENUNCIATIONS
U+1D7A3	τ	variable	capital sigma mathematical sans-serif bold italic	ILLUSTRATIONS
U+1D7A4	v	variable	capital tau mathematical sans-serif bold italic	MATH FONTS
			capital upsilon	MEANINGFUL MATH
U+1D7A5	Φ	variable	mathematical sans-serif bold italic capital phi	MISCELLANEOUS
U+1D7A6	X	variable	mathematical sans-serif bold italic capital chi	UNICODE SYMBOLS
U+1D7A7	Ψ	variable	mathematical sans-serif bold italic	SETUPS
U+1D7A8	Ω	variable	capital psi mathematical sans-serif bold italic	BIBLIOGRAPHY

			capital omega	INTRODUCTION
U+1D7A9	7	differential	mathematical sans-serif bold italic	GETTING STARTED
			nabla	
U+1D7AA	α	variable	mathematical sans-serif bold italic	BUILDING BLOCKS
			small alpha	KEYWORDS
U+1D7AB	β	variable	mathematical sans-serif bold italic	KETWORDS
			small beta	INLINE MATH
U+1D7AC	γ	variable	mathematical sans-serif bold italic	
			small gamma	DISPLAYED MATH
U+1D7AD	δ	variable	mathematical sans-serif bold italic	EQUATION LABELS
			small delta	
U+1D7AE	ε	variable	mathematical sans-serif bold italic	ENUNCIATIONS
			small epsilon	
U+1D7AF	ζ	variable	mathematical sans-serif bold italic	ILLUSTRATIONS
			small zeta	MATH FONTS
U+1D7B0	η	variable	mathematical sans-serif bold italic	
			small eta	MEANINGFUL MATH
U+1D7B1	θ	variable	mathematical sans-serif bold italic	
			small theta	MISCELLANEOUS
U+1D7B2	L	variable	mathematical sans-serif bold italic	UNICODE SYMBOLS
			small iota	
U+1D7B3	κ	variable	mathematical sans-serif bold italic	SETUPS
			small kappa	
U+1D7B4	λ	variable	mathematical sans-serif bold italic	BIBLIOGRAPHY

U+1D7B5

U+1D7B6

U+1D7B7

U+1D7B8

U+1D7B9

U+1D7BA

U+1D7BB

U+1D7BC

U+1D7BD

U+1D7BE

U+1D7BF

U+1D7C0

		small lamda	INTRODUCTION
μ	variable	mathematical sans-serif bold italic small mu	GETTING STARTED
v	variable	mathematical sans-serif bold italic	BUILDING BLOCKS
ξ	variable	small nu mathematical sans-serif bold italic	KEYWORDS
		small xi	INLINE MATH
0	variable	mathematical sans-serif bold italic small omicron	DISPLAYED MATH
π	variable	mathematical sans-serif bold italic small pi	EQUATION LABELS
ρ	variable	mathematical sans-serif bold italic	ENUNCIATIONS
ς	variable	small rho mathematical sans-serif bold italic	ILLUSTRATIONS
σ	variable	small final sigma (mathematical sans-serif bold italic	MATH FONTS
•	variable	small sigma	MEANINGFUL MATH
τ	variable	mathematical sans-serif bold italic small tau	MISCELLANEOUS
U	variable	mathematical sans-serif bold italic	UNICODE SYMBOLS
φ	variable	small upsilon mathematical sans-serif bold italic	SETUPS
x	variable	small phi mathematical sans-serif bold italic	BIBLIOGRAPHY

503

			small chi	INTRODUCTION
U+1D7C1	ψ	variable	mathematical sans-serif bold italic	GETTING STARTED
			small psi	
U+1D7C2	ω	variable	mathematical sans-serif bold italic	BUILDING BLOCKS
			small omega	KEYWORDS
U+1D7C3	9	differential	mathematical sans-serif bold italic	
			partial differential	INLINE MATH
U+1D7C4	ε	variable	mathematical sans-serif bold italic	
			epsilon symbol	DISPLAYED MATH
U+1D7C5	9	variable	mathematical sans-serif bold italic	EQUATION LABELS
			theta symbol	
U+1D7C6	×	variable	mathematical sans-serif bold italic	ENUNCIATIONS
			kappa symbol	ILLUSTRATIONS
U+1D7C7	φ	variable	mathematical sans-serif bold italic	ILLOSTRATIONS
			phi symbol	MATH FONTS
U+1D7C8	ę	variable	mathematical sans-serif bold italic	
			rho symbol	MEANINGFUL MATH
U+1D7C9	ធ	variable	mathematical sans-serif bold italic	MISCELLANEOUS
	-		pi symbol	
U+1D7CA	F	variable	mathematical bold capital digamma	UNICODE SYMBOLS
U+1D7CB	F	variable	mathematical bold small digamma	SETUPS
	0	digit	mathematical bold digit zero	SETUPS
	1	digit	mathematical bold digit one	BIBLIOGRAPHY
U+1D7D0	2	digit	mathematical bold digit two	

U+1D7D1	3	digit	mathematical bold digit three	
U+1D7D2	4	digit	mathematical bold digit four	GETTING STARTED
U+1D7D3	5	digit	mathematical bold digit five	
U+1D7D4	6	digit	mathematical bold digit six	BUILDING BLOCKS
U+1D7D5	7	digit	mathematical bold digit seven	KEYWORDS
U+1D7D6	8	digit	mathematical bold digit eight	
U+1D7D7	9	digit	mathematical bold digit nine	INLINE MATH
U+1D7D8	0	digit	mathematical double-struck digit	
			zero	DISPLAYED MATH
U+1D7D9	1	digit	mathematical double-struck digit	EQUATION LABELS
			one	
U+1D7DA	2	digit	mathematical double-struck digit	ENUNCIATIONS
			two	
U+1D7DB	3	digit	mathematical double-struck digit	ILLUSTRATIONS
			three	MATH FONTS
U+1D7DC	4	digit	mathematical double-struck digit	
			four	MEANINGFUL MATH
U+1D7DD	5	digit	mathematical double-struck digit	MISCELLANEOUS
			five	
U+1D7DE	б	digit	mathematical double-struck digit six	UNICODE SYMBOLS
U+1D7DF	7	digit	mathematical double-struck digit	
			seven	SETUPS
U+1D7E0	8	digit	mathematical double-struck digit	BIBLIOGRAPHY
			eight	

U+1D7E1	9	digit	mathematical double-struck digit	INTRODUCTION
		0	nine	GETTING STARTED
U+1D7E2	0	digit	mathematical sans-serif digit zero	
U+1D7E3	1	digit	mathematical sans-serif digit one	BUILDING BLOCKS
U+1D7E4	2	digit	mathematical sans-serif digit two	
U+1D7E5	3	digit	mathematical sans-serif digit three	KEYWORDS
U+1D7E6	4	digit	mathematical sans-serif digit four	INLINE MATH
U+1D7E7	5	digit	mathematical sans-serif digit five	
U+1D7E8	6	digit	mathematical sans-serif digit six	DISPLAYED MATH
U+1D7E9	7	digit	mathematical sans-serif digit seven	EQUATION LABELS
U+1D7EA	8	digit	mathematical sans-serif digit eight	EQUATION LABELS
U+1D7EB	9	digit	mathematical sans-serif digit nine	ENUNCIATIONS
U+1D7EC	0	digit	mathematical sans-serif bold digit	
			zero	ILLUSTRATIONS
U+1D7ED	1	digit	mathematical sans-serif bold digit	MATH FONTS
			one	
U+1D7EE	2	digit	mathematical sans-serif bold digit	MEANINGFUL MATH
			two	
U+1D7EF	3	digit	mathematical sans-serif bold digit	MISCELLANEOUS
			three	UNICODE SYMBOLS
U+1D7F0	4	digit	mathematical sans-serif bold digit	
		-	four	SETUPS
U+1D7F1	5	digit	mathematical sans-serif bold digit	
			five	BIBLIOGRAPHY

U+1D7F2	6	digit	mathematical sans-serif bold digit	INTRODUCTION
		C	six	GETTING STARTED
U+1D7F3	7	digit	mathematical sans-serif bold digit seven	BUILDING BLOCKS
U+1D7F4	8	digit	mathematical sans-serif bold digit eight	KEYWORDS
U+1D7F5	9	digit	mathematical sans-serif bold digit nine	INLINE MATH
U+1D7F6	Θ	digit	mathematical monospace digit zero	DISPLAYED MATH
U+1D7F7	1	digit	mathematical monospace digit one	
U+1D7F8	2	digit	mathematical monospace digit two	EQUATION LABELS
U+1D7F9	3	digit	mathematical monospace digit three	ENUNCIATIONS
U+1D7FA	4	digit	mathematical monospace digit four	
U+1D7FB	5	digit	mathematical monospace digit five	ILLUSTRATIONS
U+1D7FC	6	digit	mathematical monospace digit six	
U+1D7FD	7	digit	mathematical monospace	MATH FONTS
			digit seven	MEANINGFUL MATH
U+1D7FE	8	digit	mathematical monospace digit eight	
U+1D7FF	9	digit	mathematical monospace digit nine	MISCELLANEOUS

12.12 Letterlike Symbols

U+02102	\mathbb{C}	
		\complexes
U+02107	3	\Eulerconst

double-struck capital c ordinary euler constant

variable

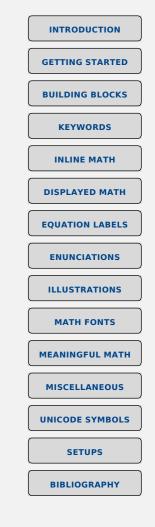
variable

U+0210A	G	
U+0210B	${\mathcal H}$	
U+0210C	H	
U+0210D	Η	
U+0210E	h	\Planckconst
U+0210F	ħ	
		\hbar
		\hslash
U+02110	${\mathcal F}$	
U+02111	T	\Im
U+02112	\mathscr{L}	
U+02113	ℓ	\ell
U+02115	\mathbb{N}	\naturalnumbers
U+02118	େ	\wp
U+02119	\mathbb{P}	\primes
U+0211A	\mathbb{Q}	\rationals
U+0211B	${\mathscr R}$	
U+0211C	R	\Re
U+0211D	\mathbb{R}	\reals
U+02124	\mathbb{Z}	\integers
U+02128	3	
U+02129	1	\turnediota
U+0212C	${\mathscr B}$	
U+0212D	C	

variable variable

script small g script capital h black-letter capital h double-struck capital h planck constant planck constant over two pi

script capital i black-letter capital i script capital l script small l double-struck capital n script capital p double-struck capital p double-struck capital q script capital r black-letter capital r double-struck capital r double-struck capital z black-letter capital z turned greek small letter iota script capital b black-letter capital c


INTRODUCTION **GETTING STARTED BUILDING BLOCKS KEYWORDS INLINE MATH DISPLAYED MATH EQUATION LABELS ENUNCIATIONS ILLUSTRATIONS** MATH FONTS **MEANINGFUL MATH** MISCELLANEOUS UNICODE SYMBOLS SETUPS **BIBLIOGRAPHY**

UNICODE SYMBOLS » LETTERLIKE SYMBOLS

U+0212F	e	
U+02130	E	
U+02131	${\mathcal F}$	
U+02133	\mathcal{M}	
U+02134	Л	
U+02135	х	\aleph
U+02136	ב	\beth
U+02137	ス	\gimel
U+02138	٦	\daleth
U+0213C	TT	
U+0213D	X	
U+0213E	Γ	
U+0213F	Π	
U+02140	\sum	
U+02141	Ð	\Game
U+02142	٦	
U+02143	Г	
U+02144	Y	
U+02145	D	
		\differentialD
U+02146	đ	
		\differentiald
U+02147	e	
		\exponentiale

variable variable variable variable variable variable variable variable variable variable variable variable variable variable variable variable variable variable variable differential variable differential variable exponential

script small e script capital e script capital f script capital m script small o alef symbol bet symbol gimel symbol dalet symbol double-struck small pi double-struck small gamma double-struck capital gamma double-struck capital pi double-struck n-ary summation turned sans-serif capital g turned sans-serif capital l reversed sans-serif capital l turned sans-serif capital y double-struck italic capital d double-struck italic small d double-struck italic small e

U+02148	Ĩ	
		\imaginaryi
U+02149	j	
		∖imaginaryj
U+0214B	zg	\upand

12.13 Miscellaneous Technical

Г	∖lceil
1	
	\rceil
L	\lfloor
]	\rfloor
ſ	
J	
≴	
ſ	
)	
I	
J	
	ر ا ا

double-struck italic small i double-struck italic small j turned ampersand

left ceiling right ceiling left floor right floor

variable

variable

binary

open close

open

close

ordinary

ordinary

ordinary

ordinary

ordinary

ordinary ordinary

ordinary

ordinary

ordinary

imaginary

imaginary

top half integral

bottom half integral
right angle with downwards zigzag arrow
left parenthesis upper hook
left parenthesis extension
left parenthesis lower hook
right parenthesis extension
right parenthesis lower hook
right parenthesis lower hook
left square bracket upper corner

INTRODUCTION **GETTING STARTED BUILDING BLOCKS KEYWORDS INLINE MATH DISPLAYED MATH EQUATION LABELS ENUNCIATIONS ILLUSTRATIONS** MATH FONTS **MEANINGFUL MATH** MISCELLANEOUS UNICODE SYMBOLS SETUPS **BIBLIOGRAPHY**

UNICODE SYMBOLS » MISCELLANEOUS TECHNICAL

U+023A2	I		ordinary	left square bracket extension	
U+023A3	L		ordinary	left square bracket lower corner	GETTING STARTED
U+023A4]		ordinary	right square bracket upper corner	BUILDING BLOCKS
U+023A5	I		ordinary	right square bracket extension	
U+023A6	J		ordinary	right square bracket lower corner	KEYWORDS
U+023A7	ſ		ordinary	left curly bracket upper hook	INLINE MATH
U+023A8	ł		ordinary	left curly bracket middle piece	DISPLAYED MATH
U+023A9	l		ordinary	left curly bracket lower hook	EQUATION LABELS
U+023AA	Į		ordinary	curly bracket extension	ENUNCIATIONS
U+023AB			ordinary	right curly bracket upper hook	ILLUSTRATIONS
U+023AC	}		ordinary	right curly bracket middle piece	MATH FONTS
U+023AD	J		ordinary	right curly bracket lower hook	
U+023AE	T		ordinary	integral extension	MEANINGFUL MATH
U+023AF	-		ordinary	horizontal line extension	MISCELLANEOUS
U+023B0	}	\lmoustache	open	upper left or lower right curly bracket section	UNICODE SYMBOLS
U+023B1	ſ	\rmoustache	close	upper right or lower left curly bracket section	SETUPS
U+023B2	Γ		ordinary	summation top	BIBLIOGRAPHY

UNICODE SYMBOLS » MISCELLANEOUS TECHNICAL

	1		1.		
U+023B3			ordinary	summation bottom	
U+023B4	-	\overbracket	topaccent	top square bracket	GETTING STARTED
U+023B5	<u> </u>	\underbracket	botaccent	bottom square bracket	
U+023B7			ordinary	radical symbol bottom	BUILDING BLOCKS
U+023D0	I		ordinary	vertical line extension	KEYWORDS
U+023DC		\overparent	topaccent	top parenthesis	
U+023DD	\cup	\underparent	botaccent	bottom parenthesis	INLINE MATH
U+023DE	~	\overbrace	topaccent	top curly bracket	
U+023DF	<u></u>	\underbrace	botaccent	bottom curly bracket	DISPLAYED MATH
U+023E0			topaccent	top tortoise shell bracket	EQUATION LABELS
U+023E1			botaccent	bottom tortoise shell bracket	
U+023E2	\Box		ordinary	white trapezium	ENUNCIATIONS

512

BIBLIOGRAPHY

ILLUSTRATIONS

MATH FONTS

MEANINGFUL MATH

MISCELLANEOUS

UNICODE SYMBOLS

SETUPS

13 Setups

13.1 Mathematics

```
\definemathematics [.1] [.2] [..,.3]...]
1 NAME
2 NAME
3 inherits: \setupmathematics
```

\s	etupmathematics	$[\ldots, \stackrel{1}{\ldots}, \ldots] [\ldots, \ldots, \stackrel{2}{=} \ldots, \ldots]$	ENUNCIATIONS
1	NAME	OPT	ILLUSTRATIONS
2	openup symbolset	<pre>= yes no = blackboard-to-bold mikaels-favourites NAME = commune</pre>	MATH FONTS
	functionstyle compact align	= STYLE COMMAND = yes <u>no</u> = l2r lefttoright r2l righttoleft	MEANINGFUL MATH
	sygreek lcgreek	<pre>= <u>normal</u> italic none = normal <u>italic</u> none</pre>	MISCELLANEOUS
	ucgreek italics	= <u>normal</u> italic none = yes no	UNICODE SYMBOLS
	autopunctuation setups	<pre>= yes no all comma yes,semicolon comma,semicolon all,semicolon = NAME</pre>	SETUPS
	domain textstyle	= default NAME = STYLE COMMAND	BIBLIOGRAPHY

INTRODUCTION

GETTING STARTED

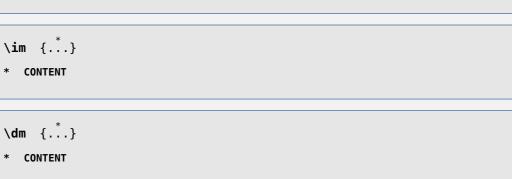
BUILDING BLOCKS

KEYWORDS

INLINE MATH

DISPLAYED MATH

EQUATION LABELS


textcolor	= COLOR	INTRODUCTION
functioncolor	= COLOR	GETTING STARTED
integral	= horizontal vertical auto autolimits limits nolimits	
stylealternative	= NAME	BUILDING BLOCKS
default	= normal <u>italic</u>	BUILDING BLUCKS
collapsing	<pre>= 0 1 2 3 default tex list all none reset</pre>	
kernpairs	= yes <u>no</u>	KEYWORDS
mathconstants	= <u>italic</u> upright	
differentiald	= <u>italic</u> upright	INLINE MATH
exponentiale	= <u>italic</u> upright	
imaginaryi	= <u>italic</u> upright	DISPLAYED MATH
imaginaryj	= <u>italic</u> upright	
pi	= <u>italic</u> upright	EQUATION LABELS
snap	= yes no	
textdistance	= DIMENSION	ENUNCIATIONS
threshold	= none small medium big DIMENSION	
mathstyle	= display text script scriptscript cramped uncramped normal	ILLUSTRATIONS
	packed small big	
color	= COLOR	MATH FONTS
autospacing	= yes no	
autonumbers	= yes no NUMBER	MEANINGFUL MATH
autofencing	= yes no	
hz	= yes no	MISCELLANEOUS
alignscripts	= yes no always empty	PHISCELEAR 2003
interscriptfactor	= NUMBER	UNICODE SYMBOLS
autointervals	= yes no	UNICODE STMBOLS
limitstretch	= yes no	
		SETUPS

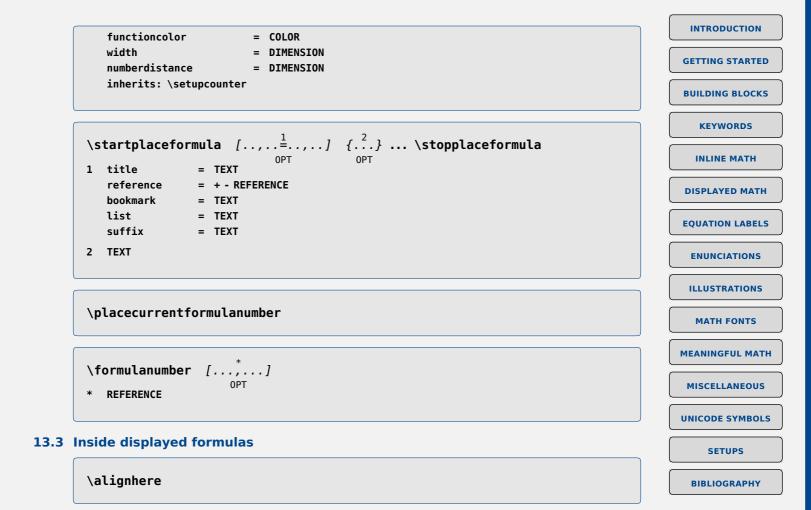
514

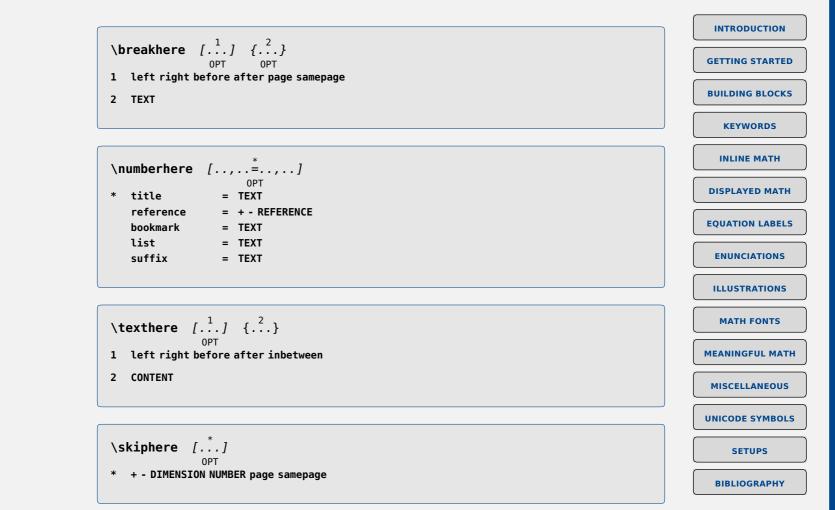
\m [.1] {.2 OPT 1 defaulti:defaulti:halfi:tighti:fixed NAME 2 CONTENT

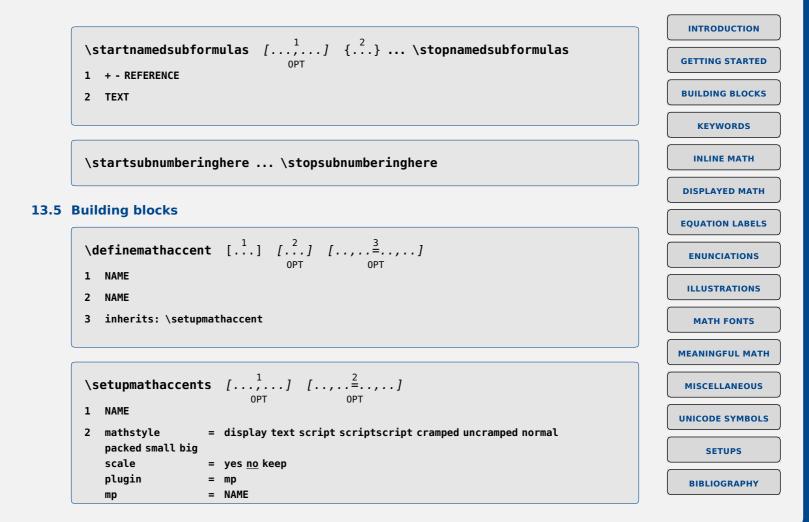
```
\math [.1] {.2
OPT
1 default i:default i:half i:tight i:fixed NAME
2 CONTENT
```

```
\mathematics [...] {...}
OPT
default i:default i:half i:tight i:fixed NAME
CONTENT
```

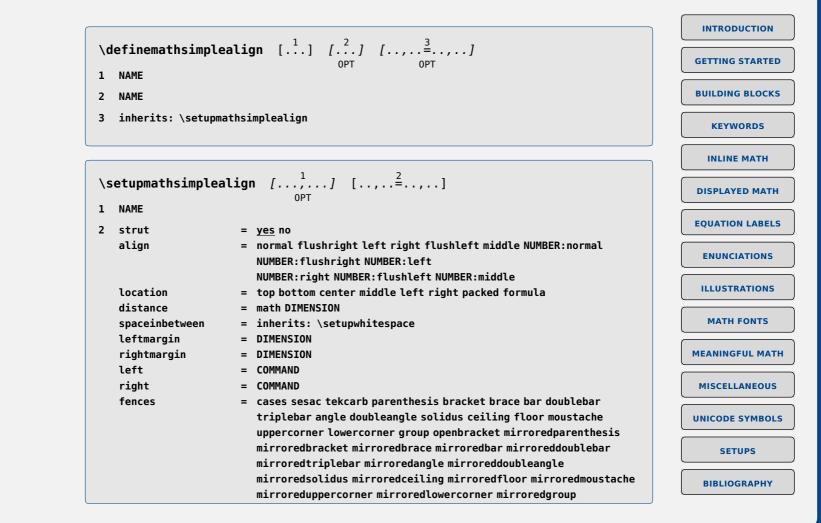

INTRODUCTION **GETTING STARTED BUILDING BLOCKS KEYWORDS INLINE MATH** DISPLAYED MATH **EQUATION LABELS ENUNCIATIONS** ILLUSTRATIONS MATH FONTS **MEANINGFUL MATH** MISCELLANEOUS UNICODE SYMBOLS SETUPS **BIBLIOGRAPHY**


INTRODUCTION **13.2 Displayed formulas GETTING STARTED** \startformula [...,*...] ... \stopformula **BUILDING BLOCKS** * packed tight middle depth line halfline -line -halfline frame small DIMENSION **KEYWORDS INLINE MATH** \startformula [...,..*...] ... \stopformula **DISPLAYED MATH** * inherits: \setupformulas **EQUATION LABELS ENUNCIATIONS** \startnamedformula $[\dots] [\dots] \dots$ \stopnamedformula **ILLUSTRATIONS** 1 NAME 2 packed tight middle depth line halfline -line -halfline frame small DIMENSION MATH FONTS **MEANINGFUL MATH** \startnamedformula [.1, ...] ... \stopnamedformula **MISCELLANEOUS** UNICODE SYMBOLS 1 NAME 2 inherits: \setupformulas SETUPS


516


		INTRODUCTION
numberstyle	= STYLE COMMAND	
numbercolor	= COLOR	GETTING STARTED
option	<pre>= packed tight middle depth line halfline -line -halfline</pre>	
	frame small DIMENSION	BUILDING BLOCKS
margin	= yes no standard DIMENSION	
leftmargin	= yes no standard DIMENSION	KEYWORDS
rightmargin	= yes no standard DIMENSION	KETTIONDS
margindistance	= number DIMENSION	
leftmargindistance	= number DIMENSION	INLINE MATH
rightmargidistance	= number DIMENSION	
alternative	= <u>default</u> single multi NAME	DISPLAYED MATH
indentnext	= yes no auto	
grid	= inherits: \snaptogrid	EQUATION LABELS
referenceprefix	= + - TEXT	
numberthreshold	= DIMENSION	ENUNCIATIONS
order	= reverse	
numberlocation	= overlay	ILLUSTRATIONS
numbermethod	= down	
textmargin	= DIMENSION	MATH FONTS
penalties	= NAME	
interlinespace	= DIMENSION	MEANINGFUL MAT
textdistance	= DIMENSION	
splitmethod	= first last both	MISCELLANEOUS
setups	= NAME	
snap	= yes <u>no</u>	UNICODE SYMBOLS
snapstep	= reset small <u>medium</u> big line	UNICODE STMBOL
bodyfont	<pre>= inherits: \setupbodyfont</pre>	
style	= STYLE COMMAND	SETUPS
color	= COLOR	
functionstyle	= STYLE COMMAND	BIBLIOGRAPHY

SETUPS » INSIDE DISPLAYED FORMULAS


INTRODUCTION 13.4 Subformulas **GETTING STARTED** \definesubformula [.1] [.2] [..., .3] [..., .3]0PT 0PT **BUILDING BLOCKS** 1 NAME 2 NAME **KEYWORDS** 3 inherits: \setupsubformula **INLINE MATH DISPLAYED MATH** \setupsubformulas $[\ldots, 1, \ldots]$ $[\ldots, 2, \ldots]^2$ EQUATION LABELS 0PT 1 NAME **ENUNCIATIONS** 2 indentnext = yes no auto ILLUSTRATIONS MATH FONTS \startsubformulas [...,..] ... \stopsubformulas **MEANINGFUL MATH** 0PT * + - REFERENCE MISCELLANEOUS UNICODE SYMBOLS \startformulas [...,*...] ... \stopformulas SETUPS 0PT * + - REFERENCE **BIBLIOGRAPHY**

5	2	2	
-	~	•	

color = C	OLOR	
textcolor = C symbolcolor = C		GETTING STARTED
align = m stretch = y	iddle	BUILDING BLOCKS
shrink = y snap = y alignsymbol = <u>y</u>	es no	KEYWORDS
offset = a	uto	INLINE MATH
i = a	uto	DISPLAYED MATH
) d. 6	[,.]	EQUATION LABELS
\definemathalignment	C [] [] [,.=,.] OPT OPT	ENUNCIATIONS
2 NAME		ILLUSTRATIONS
3 inherits: \setupmatha	lignment	MATH FONTS
	$[\ldots, 1, \ldots]$ $[\ldots, 2^{\underline{2}}, \ldots]$	MEANINGFUL MATH
1 NAME	[,.] [,.=,.] OPT	MISCELLANEOUS
2 n m		UNICODE SYMBOLS
m distance number	= DIMENSION	SETUPS
number numberdistance separator	= DIMENSION	BIBLIOGRAPHY

align	= left middle right flushleft flushright <u>normal</u> auto NUMBER:left	INTRODUCTION
location	NUMBER:middle NUMBER:right NUMBER:flushleft NUMBER:flushright = top center bottom left middle right packed formula	GETTING STARTED
mathstyle	= display text script scriptscript cramped uncramped normal	
mathstyte	packed small big	BUILDING BLOCKS
textstyle	= STYLE COMMAND	
textstyle:NUMBER	= STYLE COMMAND	KEYWORDS
textcolor	= COLOR	
textcolor:NUMBER	= COLOR	INLINE MATH
text	= TEXT	
text:NUMBER	= TEXT	DISPLAYED MATH
fences	= cases sesac tekcarb parenthesis bracket brace bar doublebar	
	triplebar angle doubleangle solidus ceiling floor moustache	EQUATION LABELS
	uppercorner lowercorner group openbracket mirroredparenthesis	
	mirroredbracket mirroredbrace mirroredbar mirroreddoublebar	ENUNCIATIONS
	mirroredtriplebar mirroredangle mirroreddoubleangle	
	mirroredsolidus mirroredceiling mirroredfloor	ILLUSTRATIONS
	mirroredmoustache mirroreduppercorner mirroredlowercorner	
	mirroredgroup mirroredopenbracket interval openinterval	MATH FONTS
	closedinterval leftopeninterval rightopeninterval	
	varopeninterval varleftopeninterval varrightopeninterval	MEANINGFUL MATH
	integerinterval tupanddownarrows tupdownarrows tdownuparrows	
	tuparrow tdownarrow abs innerproduct integerpart norm	MISCELLANEOUS
	set sequence tuple	MISCELLANEOUS
adapative	= yes <u>no</u>	
spaceinbetween	= inherits: \setupwhitespace	UNICODE SYMBOLS
reference	= + - REFERENCE	
suffix	= TEXT	SETUPS
numberthreshold	= DIMENSION	BIBLIOGRAPHY
		BIBLIUGRAPHY

method

= NUMBER

	mirroredopenbracket interval openinterval closedinterval	
	leftopeninterval rightopeninterval varopeninterval	GETTING STARTED
	varleftopeninterval varrightopeninterval integerinterval tupanddownarrows tupdownarrows tdownuparrows tuparrow tdownarrow abs innerproduct integerpart norm set sequence tuple	
text textdistance	= TEXT = DIMENSION	KEYWORDS
alternative		
simplecommand		INLINE MATH
		DISPLAYED MATH
\ definebar [1	$1 [^2] [,^3] $	EQUATION LABELS
1 NAME	OPT OPT	ENUNCIATIONS
2 NAME		
3 inherits: \setup	bar	ILLUSTRATIONS
		MATH FONTS
\setupbar [, ¹	$\ldots J [\ldots, \ldots^2]$	MEANINGFUL MAT
0P 1 NAME	1	MISCELLANEOUS
2 color	= COLOR	
	= yes <u>no</u> all always	UNICODE SYMBOL
empty unit	= yes <u>no</u> = ex em pt in cm mm sp bp pc dd cc nc	
order		SETUPS
rulethickness		
nu to the d		BIBLIOGRAPHY

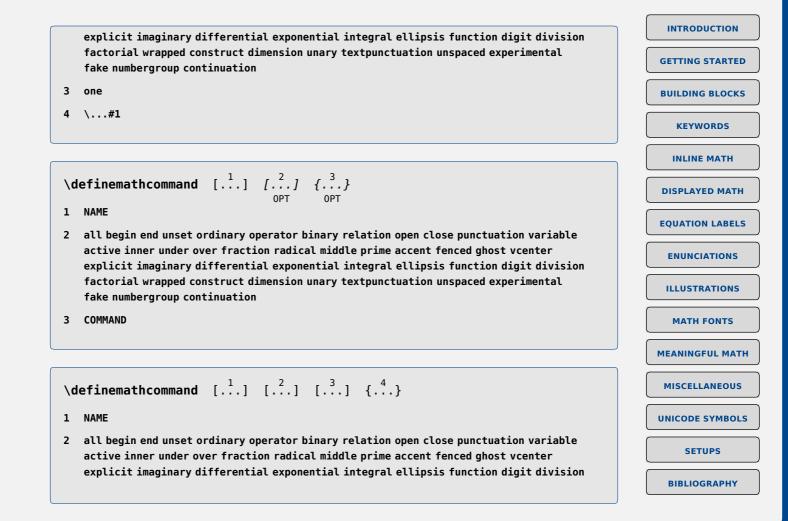
offset	=	NUMBER DIMENSION
height	=	DIMENSION
depth	=	DIMENSION
dy	=	NUMBER
max	=	NUMBER
foregroundstyle	=	STYLE COMMAND
foregroundcolor	=	COLOR
mp	=	NAME
left	=	TEXT
right	=	TEXT
repeat	=	yes <u>no</u>
text	=	TEXT

\setupmathcases [...] OPT [..,.2]...] 1 NAME 2 left = COMMAND right = COMMAND strut = yes no

INTRODUCTION **GETTING STARTED BUILDING BLOCKS KEYWORDS INLINE MATH DISPLAYED MATH EQUATION LABELS ENUNCIATIONS** ILLUSTRATIONS **MATH FONTS MEANINGFUL MATH** MISCELLANEOUS UNICODE SYMBOLS SETUPS **BIBLIOGRAPHY**

UNICODE SYMBOLS

SETUPS


BIBLIOGRAPHY

(mathstyle	= display text script scriptscript cramped uncramped normal	INTRODUCTION
		packed small big	
	distance	= DIMENSION	GETTING STARTED
	numberdistance	= DIMENSION	
	simplecommand	= NAME	BUILDING BLOCKS
	lefttext	= TEXT	
	righttext	= TEXT	KEYWORDS
	leftmargin	= DIMENSION	
	rightmargin	= DIMENSION	INLINE MATH
	fences	= cases sesac tekcarb parenthesis bracket brace bar doublebar	
		triplebar angle doubleangle solidus ceiling floor moustache	DISPLAYED MATH
		uppercorner lowercorner group openbracket mirroredparenthesis	
		mirroredbracket mirroredbrace mirroredbar mirroreddoublebar	EQUATION LABELS
		mirroredtriplebar mirroredangle mirroreddoubleangle	
		mirroredsolidus mirroredceiling mirroredfloor mirroredmoustache	ENUNCIATIONS
		mirroreduppercorner mirroredlowercorner mirroredgroup	
		mirroredopenbracket interval openinterval closedinterval	ILLUSTRATIONS
		leftopeninterval rightopeninterval varopeninterval	
		varleftopeninterval varrightopeninterval integerinterval	MATH FONTS
		tupanddownarrows tupdownarrows tdownuparrows tuparrow tdownarrow	MATHTONTS
		abs innerproduct integerpart norm set sequence tuple	
	spaceinbetween	= inherits: \setupwhitespace	MEANINGFUL MATH
			· · · · · · · · · · · · · · · · · · ·
			MISCELLANEOUS

\definemathcommand $\begin{bmatrix} 1 \\ \cdots \end{bmatrix} \begin{bmatrix} 2 \\ \cdots \end{bmatrix} \begin{bmatrix} 3 \\ \cdots \end{bmatrix} \{ \cdots \}$

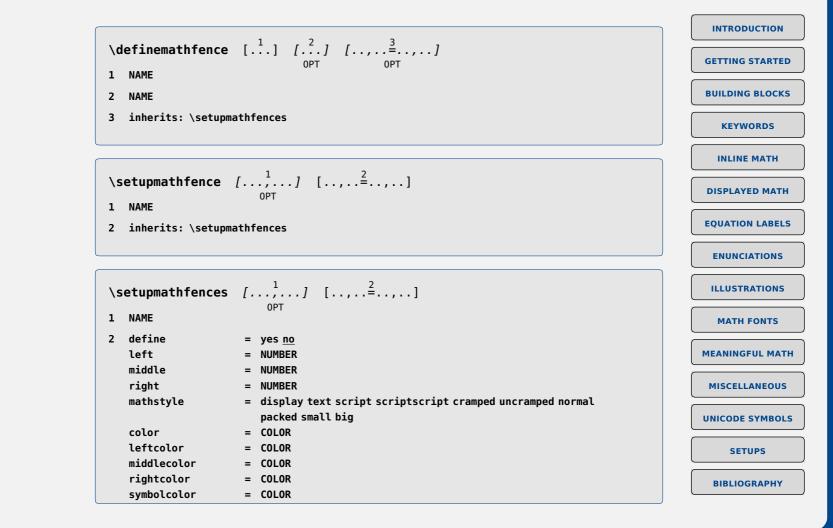
1 NAME

2 all begin end unset ordinary operator binary relation open close punctuation variable active inner under over fraction radical middle prime accent fenced ghost vcenter

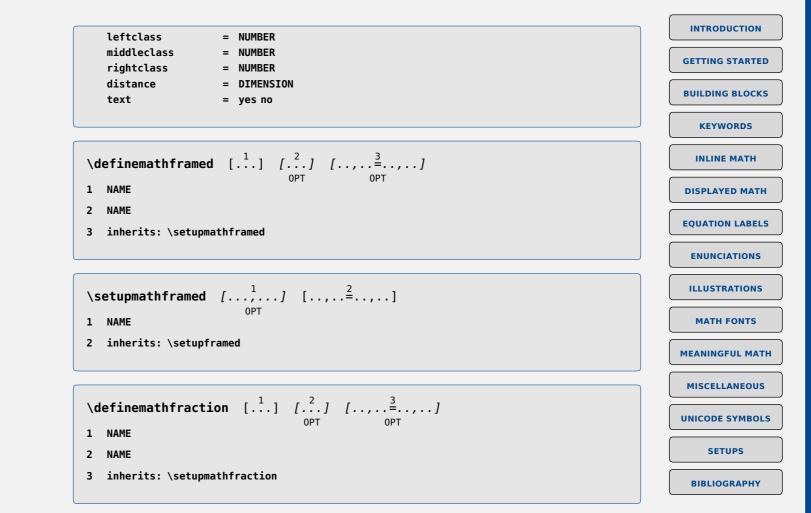
INTRODUCTION factorial wrapped construct dimension unary textpunctuation unspaced experimental fake numbergroup continuation **GETTING STARTED BUILDING BLOCKS KEYWORDS** INLINE MATH **DISPLAYED MATH** EQUATION LABELS **ENUNCIATIONS ILLUSTRATIONS** MATH FONTS MEANINGFUL MATH MISCELLANEOUS UNICODE SYMBOLS

SETUPS

BIBLIOGRAPHY


\definemathcommand $\begin{bmatrix} 1 \\ \cdots \end{bmatrix} \begin{bmatrix} 2 \\ \cdots \end{bmatrix} \begin{bmatrix} 3 \\ \cdots \end{bmatrix} \{ \cdots \}$

1 NAME


3 two

4 \...#1#2

- 2 all begin end unset ordinary operator binary relation open close punctuation variable active inner under over fraction radical middle prime accent fenced ghost vcenter explicit imaginary differential exponential integral ellipsis function digit division factorial wrapped construct dimension unary textpunctuation unspaced experimental fake numbergroup continuation
- 3 all begin end unset ordinary operator binary relation open close punctuation variable active inner under over fraction radical middle prime accent fenced ghost vcenter explicit imaginary differential exponential integral ellipsis function digit division factorial wrapped construct dimension unary textpunctuation unspaced experimental fake numbergroup continuation
- 4 COMMAND

state	= auto	INTRODUCTION
method	= auto	
size	= big Big Bigg NUMBER	GETTING STARTE
factor	= none auto NUMBER	
overflow	= no auto	BUILDING BLOCK
mathclass	= all begin end unset ordinary operator binary relation open close	
	punctuation variable active inner under over fraction radical	KEYWORDS
	middle prime accent fenced ghost vcenter explicit imaginary	
	differential exponential integral ellipsis function digit	INLINE MATH
	division factorial wrapped construct dimension unary	
	textpunctuation unspaced experimental	DISPLAYED MAT
	fake numbergroup continuation	
height	= DIMENSION	EQUATION LABE
depth	= DIMENSION	
plugin	= mp	ENUNCIATIONS
mp	= NAME	
displayfactor	= NUMBER	ILLUSTRATIONS
inlinefactor	= NUMBER	
mathmeaning	= TEXT	MATH FONTS
topspace	= DIMENSION	
bottomspace	= DIMENSION	MEANINGFUL MA
snap	= yes no	
alternative	= small big	MISCELLANEOU
setups	= NAME	MISCELLAREOU
source	= NUMBER	UNICODE SYMBO
leftsource	= NUMBER	UNICODE STMBU
middlesource	= NUMBER	
rightsource	= NUMBER	SETUPS
leftstyle	= STYLE COMMAND	
rightstyle	= STYLE COMMAND	BIBLIOGRAPHY

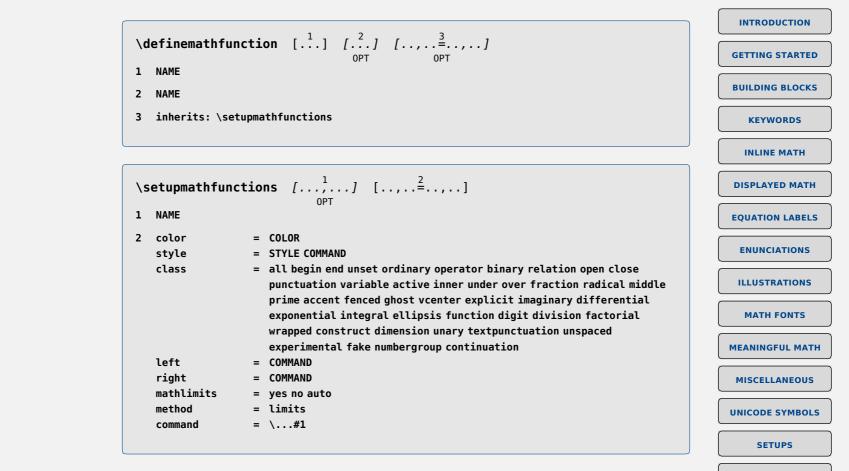
	1 2	INTRODUCTION
\setupmathfractions	$[\ldots, 1, \ldots] [\ldots, \ldots^2 = \ldots, \ldots]$	GETTING STARTE
	OPT	GETTING STARTED
1 NAME		BUILDING BLOCK
2 topdistance	= DIMENSION	
bottomdistance	= DIMENSION	KEYWORDS
margin	= DIMENSION	
color	= COLOR	INLINE MATH
textcolor	= COLOR	
symbolcolor	= COLOR	
topcolor		DISPLAYED MAT
bottomcolor	= COLOR	
strut	= <u>yes</u> no tight text math	EQUATION LABEL
alternative	= <u>inner</u> outer both	
rule	= yes no <u>auto</u> hidden symbol	ENUNCIATIONS
left	= NUMBER	
right	= NUMBER	ILLUSTRATIONS
middle	= NUMBER	
symbol		MATH FONTS
rulethickness	= <u>font</u> DIMENSION	
mathstyle	= STYLE COMMAND	MEANINGFUL MA
mathnumeratorstyle		
mathdenominatorstyle		MISCELLANEOUS
distance	= no <u>none</u> top bottom both overlay DIMENSION	
threshold	= DIMENSION	UNICODE SYMBO
inlinethreshold		
displaythreshold	= auto NUMBER	SETUPS
fences	=	
mathmeaning		BIBLIOGRAPHY
mathclass	= all begin end unset ordinary operator binary relation open	

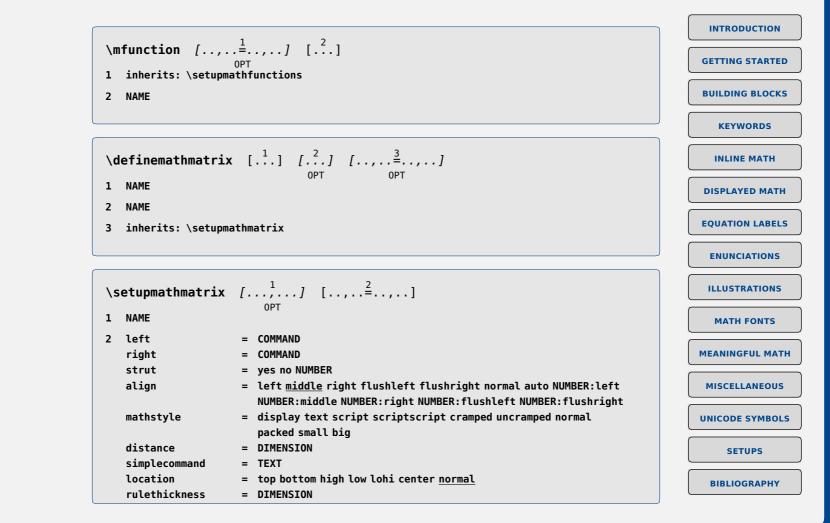
MATH FONTS

MEANINGFUL MATH

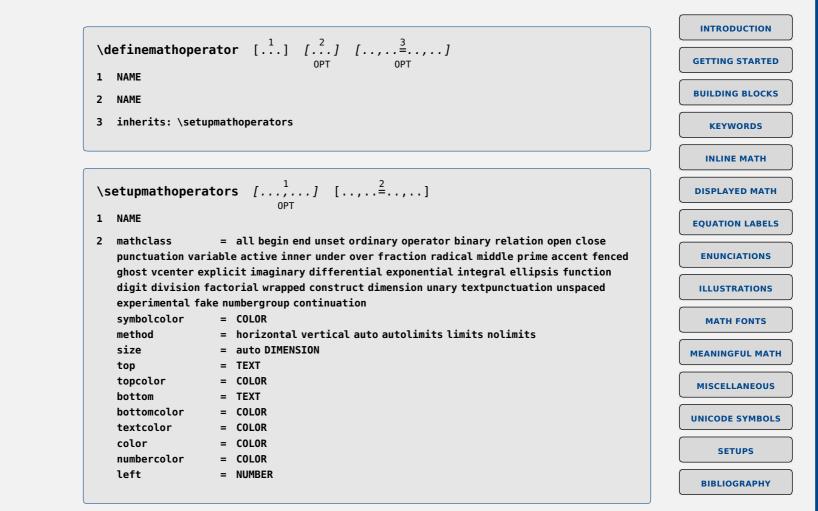
MISCELLANEOUS

UNICODE SYMBOLS

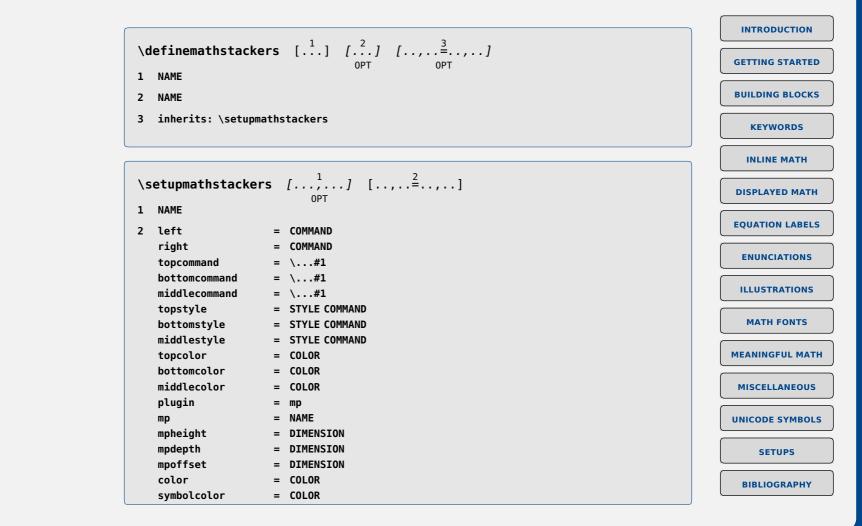

SETUPS

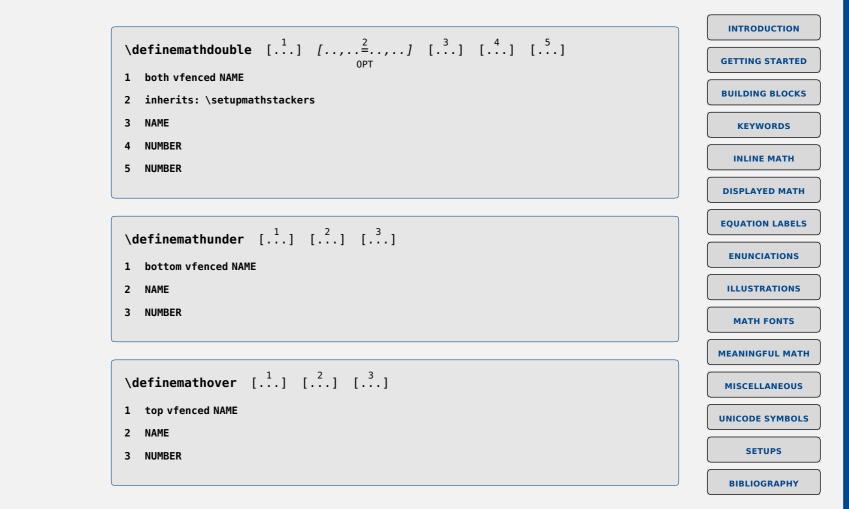

BIBLIOGRAPHY

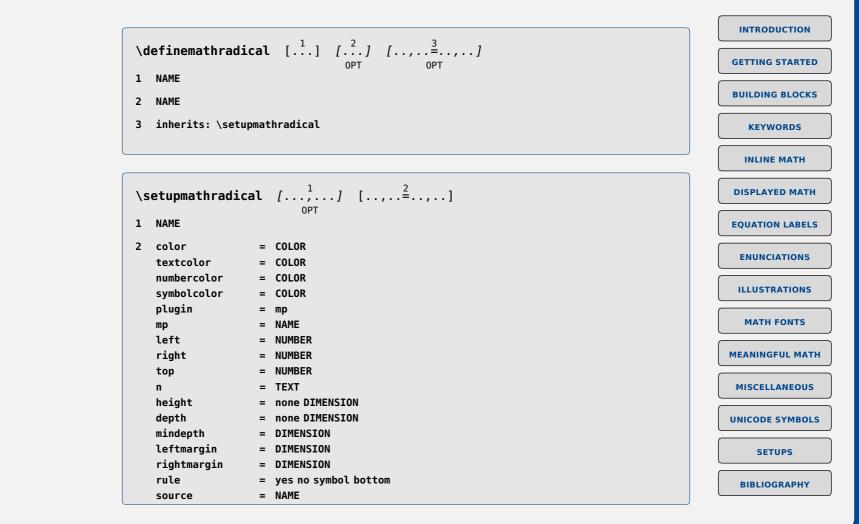
	close punctuation variable active inner under over fraction	INTRODUCTION
	radical middle prime accent fenced ghost vcenter explicit imaginary differential exponential integral ellipsis	GETTING STARTED
	function digit division factorial wrapped construct dimension unary textpunctuation unspaced experimental	BUILDING BLOCKS
hfactor	<pre>fake numbergroup continuation = NUMBER</pre>	KEYWORDS
method	= horizontal <u>vertical</u> line	
plugin mp	= mp = NAME	INLINE MATH
vfactor	= NUMBER	DISPLAYED MATH
source topalign	= NAME = left right middle flushleft	EQUATION LABELS
	flushright split:flushleft split:flushright	
bottomalign	<pre>= left right middle flushleft flushright split:flushleft split:flushright</pre>	ENUNCIATIONS
		ILLUSTRATIONS


\setupmathfraction
$$\begin{bmatrix} \dots & 1 \\ \dots & \dots & 1 \end{bmatrix} \begin{bmatrix} \dots & \dots & 2 \\ \dots & \dots & \dots & 1 \end{bmatrix}$$

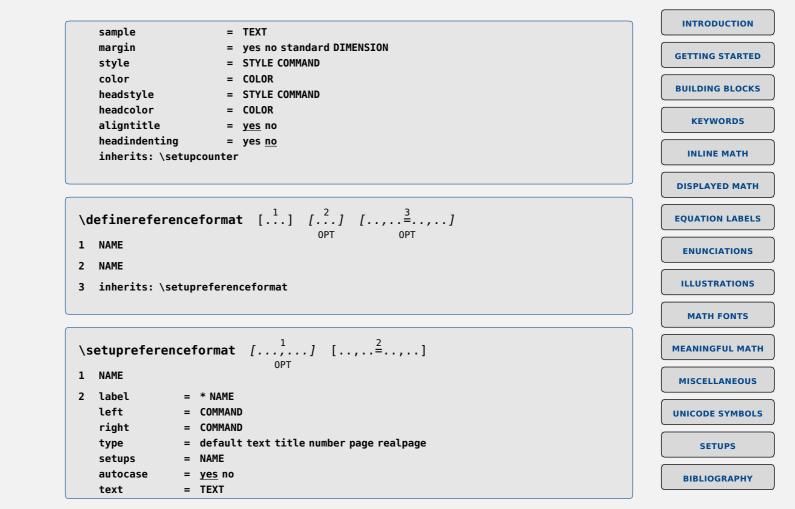
1 NAME


2 inherits: \setupmathfractions

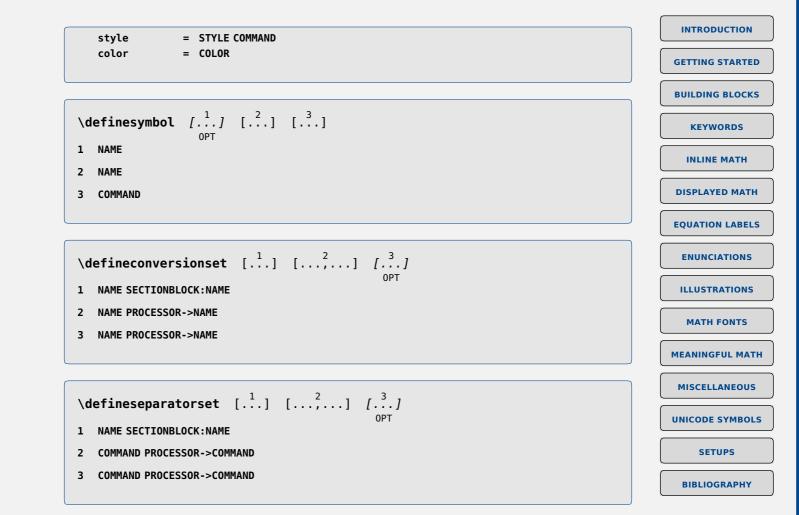


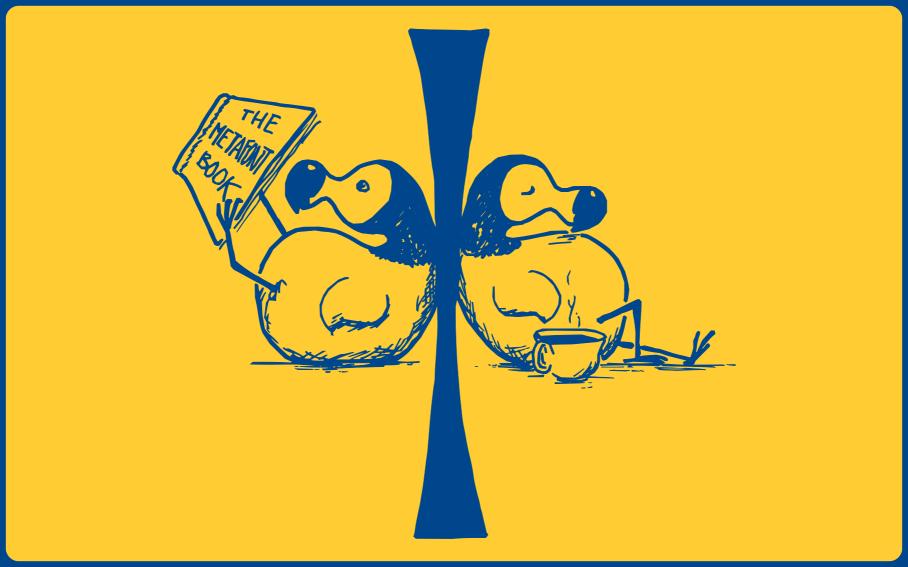

		INTRODUCTION
rulecolor	= COLOR	INTRODUCTION
moffset	= DIMENSION	GETTING STARTED
toffset	= DIMENSION	GETTING STARTED
boffset	= DIMENSION	
leftmargin	= DIMENSION	BUILDING BLOCKS
rightmargin	= DIMENSION	
fences	= cases sesac tekcarb parenthesis bracket brace bar doublebar	KEYWORDS
	triplebar angle doubleangle solidus ceiling floor moustache	
	uppercorner lowercorner group openbracket mirroredparenthesis	INLINE MATH
	mirroredbracket mirroredbrace mirroredbar mirroreddoublebar	
	mirroredtriplebar mirroredangle mirroreddoubleangle	DISPLAYED MATH
	mirroredsolidus mirroredceiling mirroredfloor mirroredmoustache	
	mirroreduppercorner mirroredlowercorner mirroredgroup	EQUATION LABELS
	mirroredopenbracket interval openinterval closedinterval	
	leftopeninterval rightopeninterval varopeninterval varleftopeninterval varrightopeninterval integerinterval	ENUNCIATIONS
	tupanddownarrows tupdownarrows tdownuparrows tuparrow tdownarrow	
	abs innerproduct integerpart norm set sequence tuple	ILLUSTRATIONS
leftedge	= none DIMENSION	
rightedge	= none DIMENSION	MATH FONTS
9 9 -		MEANINGFUL MATH
		MISCELLANEOUS
definemathnest	ting $[.1]$ $[.2]$ $[,.3]$	MISCELLANEOUS
(del filend chiles)	OPT OPT	UNICODE SYMBOLS
NAME		
2 NAME		SETUPS
3 inherits: \setu	upmathnesting	BIBLIOGRAPHY

topoffset	= DIMENSION	INTRODUCTION
hoffset voffset	= DIMENSION = DIMENSION	GETTING STARTED
minheight	= DIMENSION	BUILDING BLOCKS
mindepth mathclass	 DIMENSION all begin end unset ordinary operator binary relation open close 	
	punctuation variable active inner under over fraction radical middle prime accent fenced ghost vcenter explicit imaginary	KEYWORDS
	differential exponential integral ellipsis function digit	INLINE MATH
	division factorial wrapped construct dimension unary textpunctuation unspaced experimental	DISPLAYED MATH
offset	<pre>fake numbergroup continuation = min max normal</pre>	EQUATION LABELS
location	<pre>= top bottom high low middle NUMBER = voo po</pre>	
strut alternative	= <u>yes</u> no = <u>normal</u> defaultmp	ENUNCIATIONS
minwidth	= DIMENSION	ILLUSTRATIONS
distance order	= DIMENSION = <u>normal</u> reverse	MATH FONTS
mathlimits lt	= yes <u>no</u> = DIMENSION	
rt	= DIMENSION	MEANINGFUL MAT
lb rb	= DIMENSION = DIMENSION	MISCELLANEOUS
shrink	= yes no	UNICODE SYMBOL
stretch sample	= yes no = NUMBER	SETUPS



SETUPS » NOT REALLY MATH


<pre>mathstyle = display text script scriptscript cramped uncramped normal</pre>	
packed small big strut = yes no height depth math	GETTING STARTED
	BUILDING BLOCKS
13.6 Not really math	KEYWORDS
\defineenumeration $[\stackrel{1}{\ldots}] [\stackrel{2}{\ldots} \stackrel{2}{\ldots}] [\stackrel{3}{\ldots} \stackrel{3}{=} \dots] $	INLINE MATH
1 NAME 2 NAME	DISPLAYED MATH
3 inherits: \setupenumeration	EQUATION LABELS
	ENUNCIATIONS
\setupenumeration $[\ldots, 1, \ldots]$ $[\ldots, \ldots]^2 = \ldots, \ldots]$	ILLUSTRATIONS
1 NAME	MATH FONTS
2 title = yes no number = yes no numbercommand = \#1	MEANINGFUL MATH
numberstyle = STYLE COMMAND numbercolor = COLOR	MISCELLANEOUS
titledistance = DIMENSION titlestyle = STYLE COMMAND	UNICODE SYMBOLS
titlecolor = COLOR titlecommand = \#1	SETUPS
titleleft = COMMAND titleright = COMMAND	BIBLIOGRAPHY


left	= COMMAND	INTRODUCTION
right	= COMMAND	
symbol	= COMMAND	GETTING STARTE
starter	= COMMAND	
stopper	= COMMAND	BUILDING BLOCK
coupling	= NAME	
counter	= NAME	KEYWORDS
define	= yes no	
level	= NUMBER	INLINE MATH
text	= TEXT	
headcommand	= \#1	DISPLAYED MATI
before	= COMMAND	
after	= COMMAND	EQUATION LABEL
inbetween	= COMMAND	
alternative	= left right inmargin inleft inright margin leftmargin rightmargin	ENUNCIATIONS
	innermargin outermargin serried hanging top empty command NAME	
align	= inherits: \setupalign	ILLUSTRATIONS
headalign	= inherits: \setupalign	
indenting	<pre>= inherits: \setupindenting</pre>	MATH FONTS
display	= <u>yes</u> no	
indentnext	= yes no auto	MEANINGFUL MAT
width	<pre>= fit broad line DIMENSION</pre>	
distance	= none DIMENSION	MISCELLANEOUS
stretch	= NUMBER	
shrink	= NUMBER	UNICODE SYMBOI
hang	= fit broad none margin NUMBER	
closesymbol	= COMMAND	SETUPS
closecommand	= \#1	SETUPS
•	= yes <u>no</u> xml	
referenceprefix	= + - TEXT	BIBLIOGRAPHY

5	4	6

547

Bibliography

[CBB54] T.W. Chaundy, P.R. Barrett, and C. Batey, *The printing of mathematics: Aids for authors and editors and rules for compositors and readers at the University Press, Oxford* (Oxford University Press, London, 1954).

[DH21] M.J. Downes and M. Høgholm, *The breqn package*, https://ctan.org/pkg /breqn (2021).

[Hag16] H. Hagen, *Still going on*, http://www.pragma-ade.com/general/manuals/still.pdf (2016).

[Hag17] H. Hagen, *MetaFun. Context mkiv*, https://www.pragma-ade.com /general/manuals/metafun-p.pdf (2017).

[Hag18] H. Hagen, *Math*, http://www .pragma-ade.com/general/manuals/math -mkiv.pdf (2018).

[Knu99] D.E. Knuth, Digital typography,

Vol. 78, p.. xvi+685 (CSLI Publications, Stanford, CA, 1999).

[Lan61] W.N. Lansburgh, *Almqvist & Wiksells sättningsregler* (Almqvist & Wiksell, Stockholm, Göteborg, Uppsala, 1961).

[LS17] M. Letourneau and J.W. Sharp, *AMS Style Guide*, https://www.ams.org /publications/authors/mit-2.pdf (2017).

[Mah99] A. Mahajan, *Using* *startalign and friends* (*MyWay*), https://wiki .contextgarden.net/images/b/b4/Mathalign .pdf (2006/2010).

[Mad11] L. Madsen, *Introduktion till La-TeX: noget for alle*, https://data.math.au .dk/latex/bog/version3/beta/ltxb-2011-09 -13-20-10.pdf (2011).

[Swa99] E. Swanson, *Mathematics into Type*, https://www.ams.org/publications /authors/mit-2.pdf (1999).

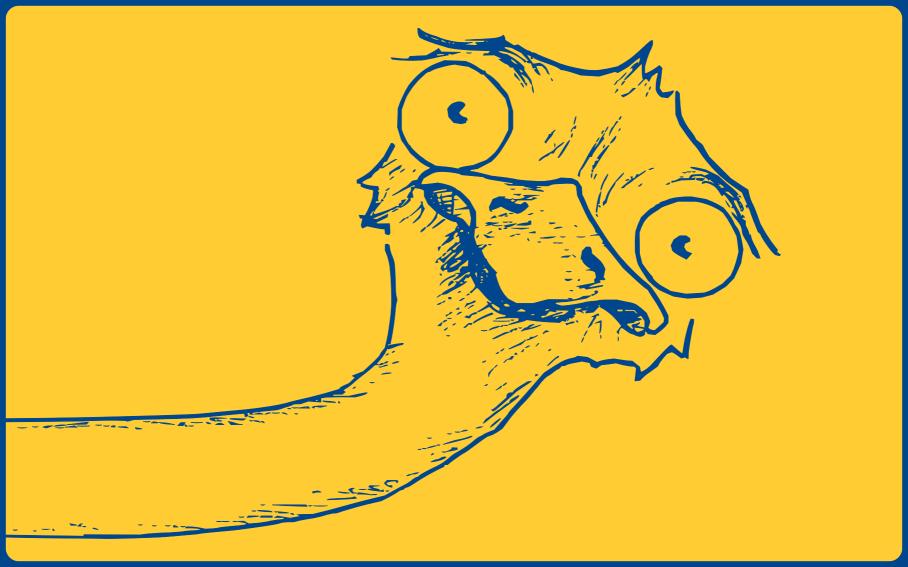
GETTING STARTED BUILDING BLOCKS KEYWORDS INLINE MATH DISPLAYED MATH EQUATION LABELS ENUNCIATIONS ILLUSTRATIONS MATH FONTS **MEANINGFUL MATH**

INTRODUCTION

MISCELLANEOUS

UNICODE SYMBOLS

SETUPS


[Uni17] University of Chicago Press, *The Chicago manual of style*, 17 ed. (University of Chicago Press, Chicago, IL, 2017).

[SS98] P.N. de Souza and J.-N. Silva, *Berkeley problems in mathematics*, p.. xiv+443 (Springer-Verlag, New York, 1998).

[Wei80] J. Weidmann, *Linear operators in Hilbert spaces*, Vol. 68, p. xiii+402 (Springer-Verlag, New York-Berlin, 1980).

[Wil95] A. Wiles, Modular elliptic curves and Fermat's last theorem, *Ann. of Math.* (2) **141**(3), 443–551 (1995).

INTRODUCTION
GETTING STARTED
BUILDING BLOCKS
KEYWORDS
INLINE MATH
DISPLAYED MATH
EQUATION LABELS
ENUNCIATIONS
ILLUSTRATIONS
MATH FONTS
MEANINGFUL MATH
MISCELLANEOUS
UNICODE SYMBOLS
SETUPS
BIBLIOGRAPHY

